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ABSTRACT

A theoretical model which can describe the dynamics of spatial bright discrete solitons in photovoltaic photorefractive
media is suggested. Four different types of staggered solitons, symmetric odd and even, twisted and antisymmetric odd
one are observed numerically and their behavior is investigated with respect to small transverse phase offsets. A first
experimental observation of steering of such symmetric odd staggered solitons in lithium niobate waveguide arrays is
presented.
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1. INTRODUCTION

Spatial solitons are localized structures which can be found in various systems due to the interplay between diffractive
and nonlinear effects, and especially optical spatial solitons are believed to have a great potential in future applications
[1]. Photorefractive solitons, which arise from light-induced charge redistribution and internal space-charge fields that
cause refractive index variations via the Pockels effect, require small optical power for their generation (microwatt
level) and may have formation times down to the milliseconds range {2J. Photovoltaic solitons, which belong to this
class of nonlinear waves, have been suggested to exist in media with a significant photovoltaic effect ten years ago [3]
and soon thereafter they were observed in bulk lithium niobate crystals [4]. On the other hand, so-called discrete
solitons, which result from the balance between discrete diffraction [5] and nonlinearity, were predicted to exist in
nonlinear waveguide arrays in 1988 [6]. This generic type of soliton (discrete solitons are not directly related to a certain
material) was experimentally observed in AlGaAs waveguide arrays six years ago [7]. Some years earlier it has been
already suggested that discrete self-focusing can be achieved in a nonlinear waveguide array with defocusing
nonlinearity [8]. However, up to date there are no results on discrete photovoltaic solitons and our aim is to bridge the
gap between these two kinds of solitons.

The paper is organized as follows. In Section 2 we suggest a model equation, which can describe the dynamics of
various discrete bright photovoltaic solitons and give the explicit expressions for each ofthem. Simulations which show
the steering of these localized modes are presented in Section 3. Section 4 is devoted to the experimental setup and
results, while conclusions are given in Section 5.

2. THEORETICAL RESULTS

2.1 Model

The scalar wave equation for the slowly varying amplitude of the optical field in steady state two-dimensional
systems with a nonzero photovoltaic current and with electrons as the sole charge carriers is given by [3, 4]:
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(1)az 2k 3x rO

Here k is the wave number and rOS the unperturbed extraordinary refractive index. Mathematically, the nonlinear
refractive index perturbation due to the Pockets effect can be written as:

Lfl =a , (2)r

where I = tAXI2 intensity, 'D G/q is the dark irradiance (G is the dark generation rate, while q is the photo-
ionization cross section), and a = —no3rEpv/ 2 . Here r= r33 is the effective etectro-optic coefficient, while is
the photovoltaic field constant. Using the following set of substitutions, s =x/x0, = z /(/2) and A =UID°5,
where x0 is the arbitrary width, the wave equation (1) can be transformed into a dimensionless evolution equation:

.aU 1a2U 1U12U
l—+————13Pv =0 (3)a 2ôs2 l+U2

with flpv k2x0 2(aI /no . After the usual discretization this equation reads:

I + (un, + —2U ) — fUn U
(4)a 2h 1+IUnI

where U is the wave function of the n-th nonlinear element (n = 1 N). In the case of periodic boundary
conditions (UN+1 U1), h = (L-Nw)/(Nx& is the normalized distance between two elements and w represents the
width of a single waveguide. This equation does not belong to the group of integrable equations because it has
only two conserved quantities, power P and Hamiltonian H, while the number of unknowns in this system of
ordinary differential equations is N. The Hamiltonian is given by:

N
2 21 IU _U12l

H1flpv[lUJ
—ln1+UI 1 2h2 ' (5)

while the soliton power is given by:

fr1J2. (6)

Our model equation wilt be examined in detail on the example of a waveguide array in the photorefractive crystal
lithium niobate exhibiting a strong photovoltaic effect. The corresponding crystal parameters are r = 32x1012

m/V, n, = 2.20 (for the green light from the argon ion laser with 2 = 514.5 nm) while the photovoltaic field is
assumed to be 25 kV/cm. The arbitrary scaling length x0 is set to 8 im.

2.2 Soliton solutions

From the model equation (4) it is possible to get the following four approximate analytical expressions for the
different narrow localized solutions:

a) symmetric odd staggered (o) solution reads:

U
v - h2 u - I U0 I

(7)I 0flpv+2_v I

O±ml2h2(Vh2)m
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where the central element ofthe array is marked with n 0, while m = 1, 2, .

b) The antisymmetric odd staggered (a) solution has the form [9]:

U0 =0, U1 U±i±m
2h2(v_h2)m

' (8)

c) an even staggered (e) solution is described by:

U — .5h2 — U±1
(9)I +1.5h2 —v' I

2h2(v_h2)m'

d) while twisted staggered (t) solutions can be mathematically described by [9]:

U — v-O.5h2
U — (10)I +0.5h2 —v' 2h2(v_h2)m

These staggered solutions are shown in Fig. 1 for the soliton power P = 6.55.
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Fig. 1. Staggered discrete photovoltaic solitons with the same power P = 6.55. a) Symmetric odd, b) even, c) twisted, and d)
antisymmetric odd soliton.
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All of these solutions have a limited interval of allowed solitons frequencies. The width of these intervals depends
on the values offlsc and h2. The corresponding frequency intervals where these analytical solutions can be found
are given in Table 1.

In the linear regime, the last term in Eq. (4) can be neglected. An illustration of discrete diffraction of an even
staggered solution in a waveguide array in lithium niobate is presented in Fig. 2.
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Fig. 2. Discrete diffraction of an even staggered mode in a one-dimensional lithium niobate waveguide array (top view). The
number ofelements in the array is N 101, while the initial value ofthe dimensionless pulse amplitude is 0.45.

3. NUMERICAL RESULTS

In this section the linear stability of localized modes with respect to transverse translational shifts is considered.
The localized modes are numerically forced to move transversally by introducing a small phase difference (phase
tilt) ço between adjacent lattice elements. The observed dynamics is rather complex and strongly depends on both
soliton power and introduced phase offset. Some typical results are presented in Fig. 3 . Twisted (Fig. 3e), odd
symmetric (Fig. 3a) and odd antisymmetric solitons (Fig. 3g) may propagate stable along the array within the
allowed interval of their power (frequency). An even soliton is usually trapped by the lattice and transformed into
a symmetric odd breather [10] (Fig. 3b-c). Both twisted and odd antisymmetric solitons are unstable with respect
to the introduction of a tiny phase tilt ço. Usually, these waves convert either into the corresponding symmetric odd
breather with the same power and total energy, or evolve into a breather with lower energy where part of the
energy is lost as radiation (Fig. 3f, h). Initially tilted symmetric odd solitons can be either trapped (Fig. 3b) or be
unaffected by the lattice, i.e., a free propagation across the lattice may be obtained.

Tab. 1. Frequency intervals for different types of narrow localized modes.

50 fl 75

Proc. of SPIE Vol. 6023  60230K-4

Downloaded from SPIE Digital Library on 30 Sep 2009 to 132.170.19.73. Terms of Use:  http://spiedl.org/terms



•1

Fig. 3. Propagation ofdifferent localized modes with additional transverse phase offset. Symmetric odd soliton with P = 0.582

a) 0, and b) ço = 0.25'r. Even soliton with v = 15.28 c) ço = r, and d) ç = 0.2Sir. Twisted staggered soliton with v = 17 e) , =
0, and = 0.2Sir. Antisymmetric odd soliton with v =15.1 g) =0, and h) p =O.Sir. Here t = / 2h2 is normalized

propagation coordinate.
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4. EXPERIMENTAL RESULTS

In this section we describe our experimental setup that we have used and present results which confirms the
steering effect of symmetric odd staggered solitons. Our experimental setup is sketched in Fig. 4. The green light
of an argon ion laser (2 514.5 nm) is divided into two beams by virtue of a Mach-Zehnder interferometer, where
the optical power can be controlled by a combination of polarizer and half-wave plate. The two beams of equal
power are overlapped under a small angle and are coupled into the waveguide array using a 40x microscope lens.
The grating period of the interference pattern is carefully adjusted to match the inter-waveguide distance of the
array. In this way a staggered input pattern, that consists of a central maximum and two first neighbours which are
out of phase relative to the center, is obtained (see Fig. 5a). A cylindrical lens forms the elliptical shape of an input
light beam to optimize the in-coupling efficiency. A CCD camera system serves for monitoring of the intensity
distribution on the rear face ofthe array.
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Fig. 4. Experimental setup. BS's, beam splitters; M's, mirrors; 2 I 2, halfwave plate; P, polarizer; CL, cylindrical lens; ML's,
microscope lenses; WG, waveguide array; CCD, CCD camera.

Our sample is fabricated by titanium in-diffusion [10] into x-cut substrates (a x b x c 1 mm x 7.8 mm x 18 mm)
where the c-axis points along the grating vector. In order to enhance the photorefractive response, the sample was
additionally doped by copper indiffusion with a copper concentration of 5x1024 m3. The distance between the
adjacent channels is 3.6 itm while the width ofthe single mode channel waveguides is 4 pm.

Both linear and nonlinear light propagation in the waveguide array is shown for an input power of about 4 jtW in
Fig. 5. Because our sample has a rather large time constant, linear wave propagation can be observed immediately
after switching on the input beams in Fig. 5B. This profile, which represents the regime of discrete diffraction, is
slightly asymmetric due to a small initial phase offset of the two input beams. After a few minutes of illumination
light-induced phase changes lead to self-focusing of the beam, which finally results in the formation of a steady-
state odd symmetric staggered soliton (Fig. 5C), which is recorded up to steady state within one hour of
illumination. This soliton is shifted with respect to the input beam demonstrating steering of the soliton across the
array (compare with Fig. 3b). We were able to monitor this localized structure for almost two hours without any
changes. ._

Fig. 5. Images from the CCD camera taken at the front (A) and at the rear face (B, C) ofthe nonlinear waveguide array.
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5. CONCLUSIONS

In conclusion, the propagation of the bright spatial discrete solitons that result from the photovoltaic effect in a
photorefractive material is modelled. It has been shown that self-focusing may be observed in an array of coupled
defocusing nonlinear waveguides and that this leads to the creation of self-localized (soliton-like) patterns with
relative phase difference of r between neighbouring waveguides, so-called staggered localized modes. Four
different solutions are found analytically: symmetric odd and even, twisted and antisymmetric odd staggered
modes. Numerical calculations show the stable propagation of both symmetric and antisymmetric odd, and twisted
staggered modes in the whole existence region, and the stable propagation of the low power even staggered mode.
The steering properties of these localized modes are also considered and our results show that the even, the
twisted, and the antisymmetric odd mode are unstable with respect to transverse phase offsets. The experimental
observation of steering of stable odd symmetric soliton across the defocusing nonlinear waveguide array is also
presented.
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