Lab course: Low energy electron microscopy (LEEM)

Do not carry out any action with the LEEM without confirmation by the supervisor! Vacuum valves are operated by the supervisor only!

1 LEEM setup

The low energy electron microscope used in this lab course is shown schematically in Figure 1.

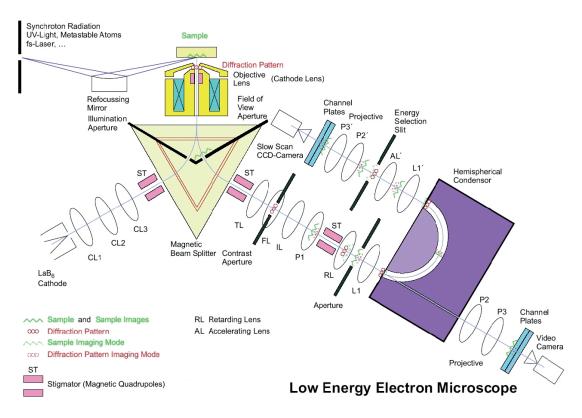


Figure 1: Schematic setup of the LEEM

In addition to electron microscopy, the setup can also be used for low energy electron diffraction at μ m-sized regions (= μ LEED) and photoemission electron microscopy (=PEEM). In this course you will not use the hemispherical energy analyzer, but operate the microscope in an energy-integrating mode.

2 Materials

You will investigate a monolayer of para-sexiphenyl (p-6P) molecules adsorbed on a clean Ag(111) surface. The molecules have been thermally evaporated onto the cleaned surface of the silver crystal. The crystal surface was cleaned by argon sputtering and annealing in UHV. Figure 2 shows the arrangement of the top layer Ag atoms of a Ag(111) surface. The structural formula of p-6P is shown in Figure 3.

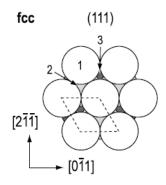


Figure 2: Arrangement of surface atoms of the Ag(111) surface

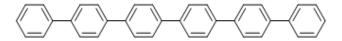


Figure 3: Structural formula of p-6P

3 Experimental tasks

- 1. Confirm that the LEEM instrument is aligned and familiarize yourself with the operation of the instrument.
- 2. Operate the LEEM in bright field mode. Optimize the LEEM parameters (electron energy, focusing) for a good contrast of step edges of the Ag(111) substrate.
- 3. Takes µLEED images from different surface regions with differently sized illumination apertures.
- 4. Create several dark field images from the same surface region that was imaged in task 2 using different LEED spots.

4 Data analysis and discussion

- 1. Analyze the μLEED pattern obtained from an individual domain to determine the surface lattice cell parameters of the p-6P monolayer.
 - Use the LEED spots of the Ag(111) substrate ($a_{\text{fcc}} = 4.085 \,\text{Å}$) as a scale for the images in reciprocal space.
 - Identify a set of p-6P LEED spots which forms a unit cell of the reciprocal surface lattice.
 - Determine the lattice constants and angles of the adsorbate lattice and calculate the matrix which describes the p-6P superstructure with respect to the Ag(111) substrate.
- 2. Explain why the LEED pattern obtained from a larger sample area differs from the μ LEED image of a single p-6P domain.

- 3. Combine the dark field images into a single false color image which visualizes the distribution of the different p-6P domains on the surface.
- 4. Discuss how the local structure of the surface influences the arrangement of p-6P molecules.
 - Compare the composite dark field image with the a bright field image of the same surface area to find correlations between between substrate morphology and the arrangement of molecules.