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1.1 Introduction10

Optical waves propagating in photonic periodic structures are known to ex-11

hibit a fundamentally different behavior when compared to their homoge-12

neous counterparts in bulk materials. In such systems the spatially periodic13

refractive index experienced by light waves is analogous to the situation in14

crystalline solids, where electrons travel in a periodic Coulomb potential [1].15

Consequently, the propagating extended (Floquet Bloch) modes of a linear16

periodic optical system form a spectrum that is divided into allowed bands,17

separated by forbidden gaps, too, and the two different physical systems share18

most of their mathematical description. Photonic band-gap materials, which19

may be artificially fabricated to be periodic in three, two, or only one dimen-20

sion, hold strong promise for future photonic applications like miniaturized21

all-optical switches, filters, or memories [2]. Here novel opportunities are of-22

fered when nonlinear material response to light intensity is taken into account.23

When studying such nonlinear photonic crystals it turns out that light propa-24

gation is governed by two competing processes: linear coupling among different25

lattice sites and energy localization due to nonlinearity. For an exact balance26

of these counteracting effects self-localized states can be obtained, which are27

called lattice solitons [3–6].28

Uniform one-dimensional (1D) waveguide arrays (WAs) may be under-29

stood as a special case of 1D photonic crystals with a periodicity of the re-30

fractive index scaled to the wavelength of light. These arrays consist of equally31

spaced identical channel waveguides, where energy is transferred from one site32

to another through evanescent coupling or tunnelling of light. Although such33

arrays share many of their linear and nonlinear properties with other periodic34

systems in nature, for example excitons in molecular chains [7], charge density35

waves in electrical lattices [8], Josephson junctions [9], spin waves in antiferro-36

magnets [10], or Bose-Einstein condensates in periodic optical traps [11], they37
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have some advantages making them attractive candidates for studying gen-1

eral nonlinear lattice problems: Due to the larger wavelength of light when2

compared to, e.g., electrons, wave amplitudes can be directly imaged, thus3

allowing for a full experimental control of input and output signals. The rel-4

atively easy sample fabrication and compact experimental setups, together5

with suitable working environments at room temperature without the need6

for vacuum chambers, have put the optics domain at the forefront of research7

on nonlinear periodic systems.8

In this chapter we will provide a brief overview on light propagation and9

soliton dynamics in 1D nonlinear WAs, and will discuss some recent exper-10

imental results on the example of arrays in photorefractive lithium niobate11

(LiNbO3). In the following section, we discuss some basic linear properties of12

WAs like discrete diffraction, normal and anomalous diffraction, and meth-13

ods to engineer tailored photonic band structures using different experimental14

techniques and material systems. The third part is devoted to nonlinear light15

propagation in 1D WAs. After discussing the instability regimes of extended16

Floquet-Bloch (FB) modes in 1D lattices, which coincide with the occurrence17

of discrete modulation instability, we give an overview of different types of18

localized nonlinear excitations, for example multi-hump, dark, or vector lat-19

tice solitons, that have been investigated in WAs. Finally, the last section is20

devoted to the interaction of light with lattice defects and other light beams,21

which may form the basic elements for novel applications in photonics.22

1.2 Linear properties and Waveguide Array Formation23

1.2.1 Band-gap Structure and Floquet-Bloch Modes of24

One-Dimensional Lattices25

In absence of nonlinear effects optical beams will spread in space because of26

diffraction while pulses will experience temporal broadening due to dispersion.27

Although diffraction is an omnipresent geometrical effect and dispersion is ma-28

terial dependent and absent in vacuum, both effects occur because of different29

rates of phase accumulation for different spatial or temporal frequencies. In30

physics, the dispersion relation is the relation between the system’s energy (or31

propagation constant) and its corresponding momentum (Bloch momentum).32

The dispersion relation of linear waves in bulk or continuous media has a33

parabolic form [12]. Consequently, in a 1D planar waveguide layer unlimited34

transverse propagation of modes results in a continuous dispersion spectrum35

with the same parabolic shape. A vivid example for a planar waveguide fabri-36

cated in LiNbO3 is given in Fig. 1.1a. By a modified prism coupler setup [13]37

the effective indices neff = βλ/2π have been measured (normalized to the38

substrate index nsub) as a function of Bloch momentum, where β is the cor-39

responding (longitudinal) propagation constant and λ is the light wavelength.40

Having in mind analogies drawn between dispersion and diffraction [12, 14],41
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diffraction is determined by the curvature at the corresponding point of the1

dispersion curve while the direction of propagation of light is normal to this2

curve. As can be seen, in this example the diffraction coefficient is negative3

(normal diffraction) for all propagating waves.4

Fig. 1.1. Experimentally measured band structures of (a) a planar waveguide and
(b) a 1D WA (grating period Λ = 8μm). Symbols are measured propagation con-
stants. The dashed line in (a) is just a guide for the eye, whereas in (b) solid lines
show the corresponding calculated band structure.

In media with a periodic index modulation a band structure arises with5

allowed bands separated by gaps where light propagation is forbidden [12,15].6

The form of the band-gap structure depends on system parameters such as,7

for example, the distance between adjacent channels of the nonlinear WA and8

the strength of the refractive index modulation, which can be fully controlled9

in the fabrication process. To take up the previous example, an additional 1D10

periodic index modulation can be formed in the planar waveguide of Fig. 1.1a11

by two-beam holographic recording of an elementary grating [16]: Each refrac-12

tive index maximum of the modulated pattern forms a single-mode channel13

waveguide which is evanescently coupled to its first neighbors. An example14

of the obtained band structure which shows the first two bands of a LiNbO315

WA is given in Fig. 1.1b. While diffraction in bulk media is always normal, in16

periodic media diffraction can reverse its sign leading to regions of anomalous17

diffraction, for example, within the first band for π/2 < kzΛ <π and around18

the center of the first Brillouin zone (BZ) in the second band. Here, kz stands19

for the transverse component of the wave number, and Λ denotes the grating20

period. Furthermore, diffraction may even vanish at certain points in the dis-21

persion diagram (e.g., for kzΛ ≈ π/2 in the first band), allowing for almost22

diffraction-free propagation of light.23

Another example of a measured band structure with four guided bands24

of a 1D WA with stronger modulation is given in Fig. 1.2a. Experimental25

values of propagation constants are denoted by squares, whereas solid lines26
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correspond to numerically calculated bands. If the condition neff −nsub > 0 is1

fulfilled modes are guided, otherwise they are radiative. The implementation2

of the prism coupling method [13] allows for the selective excitation of pure FB3

modes of the periodic structure. Some illustrative examples of excited modes4

are given in Fig. 1.2b. Numerical results shown in the upper rows correspond5

fairly well to the experimentally obtained images measured at the samples’6

output facet.7

Fig. 1.2. (a) Band-gap structure of WA with period Λ = 8μm. (b) Intensity of FB
modes from different bands: numerical results (top) and experimental data (bottom).

1.2.2 Fabrication of Nonlinear Waveguide Arrays8

One-dimensional WAs have been fabricated in quite different materials rang-9

ing from semiconductors [4,17] and photorefractives [18,19], to polymers [20],10

glasses [21], and liquid crystals [22]. WAs in the semiconductor AlGaAs have11

been formed by, e.g., reactive-ion etching of adequate wafers with epitaxially12

fabricated layers. This semiconductor crystal possesses an instantaneous Kerr-13

like focusing nonlinearity for optical wavelengths in the infrared, and typical14

optical powers required are in the range of 102–103W. In silica-based glasses15

either ion exchange in molten salts or direct writing using femtosecond lasers16

has been used. WAs in polymers have been fabricated by UV lithography,17

whereas in liquid crystals a set of regularly spaced transparent electrodes has18

been used. In photorefractive crystals, where nonlinearities are based on light-19

induced space charge fields and the electrooptic effect, two different methods20

for WA formation have been used so far: induction of index gratings by il-21

lumination of the crystal with light [18], or permanent index changes due to22

indiffusion of titanium stripe patterns [19]. Light-induced lattices are based23

on the interference of two or more writing laser beams propagating inside24

the bulk sample. Such lattices are both rewritable and dynamically tunable.25

One may control the coupling between channels by adjusting the intensity of26
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the recording light while Bragg reflection is defined by the angle between the1

interfering beams. However, the achievable refractive index modulations are2

rather limited and clumsy equipment is required to stabilize the interference3

patterns. On the other hand, there exist several methods to fabricate perma-4

nent waveguides and structures in photorefractive crystals [23]. In LiNbO35

the method of in-diffusion of titanium has been used to form permanent WAs6

with lattice periods ranging from 2 to 20 microns. Furthermore, in-diffusion of7

impurities like iron or copper may be used to tailor the photorefractive prop-8

erties of the material. Besides its wide use in nonlinear optics, for example9

for frequency conversion and fast optical modulation of light, LiNbO3 possess10

a rather high nonlinear index change at very low light intensities. However,11

this material is also sensitive to holographic light scattering and has a rather12

long build-up time for nonlinear index changes in the range of seconds or even13

minutes.14

1.3 Light Localization and Lattice Solitons15

1.3.1 Lattice Solitons16

Lattice solitons are localized structures which exist due to the exact balance17

between periodicity and nonlinear effects. They comprise both discrete and18

gap solitons. Discrete solitons exist in the first (semi-infinite) band-gap due19

to total internal reflection. Near the top of the first band, which is located20

at the center of the first BZ (see Fig. 1.1b), where beam diffraction is nor-21

mal, unstaggered (adjacent elements are in-phase) discrete solitons may exist22

provided that a self-focusing or positive nonlinearity is present [4,24–27]. The23

prediction of the existence of fundamental optical lattice solitons in WAs dates24

back to 1988 [3], and ten years later the group of Silberberg succeeded in the25

experimental observation of such solitons in a Kerr-like focusing medium [4],26

which has stimulated intense research in this field [28–30].27

Gap solitons [5,7,31–33] are yet another type of stable nonlinear structures28

that can be observed in periodic media. Due to a nonlinear index change the29

propagation constant of these solitons is shifted inside the gap in-between30

two allowed bands. Fundamental gap solitons may be excited either from the31

top of the second band at the edge of the first BZ (normal diffraction) in32

lattices with self-focusing nonlinearity [34], or from the first band at the edge33

of the first BZ (anomalous diffraction) in lattices exhibiting self-defocusing34

nonlinearity [33]. In the latter case, soliton structures are of staggered form35

(adjacent elements are out-of-phase) [35–37].36

A recent example of discrete gap soliton formation in a LiNbO3 WA with37

defocusing nonlinearity is given in Fig. 1.3a. The top image of the output38

facet is taken immediately after light is coupled in and monitors linear discrete39

diffraction inside the array. With increasing recording time the nonlinearity40

builds up and finally the light is trapped predominantly in a single channel.41
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Fig. 1.3. Gap soliton formation in a LiNbO3 WAwith period Λ = 7.6μm at the edge
of the first BZ of the first band. (a) Output intensity for single-channel excitation
with input power Pin = 30μW. (b), (c) Related BPM simulations for the linear (b)
and nonlinear (c) case.

The inset shows the corresponding interferogram of the output light with1

a superimposed plane wave, which represents an experimental proof for the2

staggered amplitude of the formed soliton. A numerical simulation (based on3

a beam propagation method (BPM)) which corresponds to the case of discrete4

diffraction is presented in Fig. 1.3b, while Fig. 1.3c shows the nonlinear case5

of stable soliton propagation inside the gap.6

1.3.2 Discrete Modulational Instability7

Experimentally, discrete and gap solitons may be obtained through the mech-8

anism of modulational instability (MI) of a wide input beam. Discrete MI9

represents a nonlinear phenomenon in which initially smooth extended waves10

of the periodic system (FB modes) desintegrate into regular soliton trains un-11

der the combined effects of nonlinearity and diffraction. It has been predicted12

that FB modes exhibiting anomalous diffraction become unstable in the pres-13

ence of self-defocusing nonlinearity while modes exhibiting normal diffraction14

break up under the effect of a self-focusing nonlinearity [3,35,38–40]. Experi-15

mentally, this has been proven for the first time in AlGaAs arrays exhibiting a16

focusing cubic nonlinearity [41], followed later by related experiments in both17

quadratic [42] and defocusing WAs [43].18

An example of numerical and experimental evidence of discrete MI in19

LiNbO3 in the first and second band is presented in Fig. 1.4 [44]. The experi-20

mental pictures on the top consist of 75 intensity line scans each, which have21

been taken from the output facet every minute, mimicing the time evolution22
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Fig. 1.4. Discrete MI in a defocusing WA: Comparison of experimentally measured
and simulated light intensity at the output facet. (a) Edge of the first BZ in the first
band for Pin = 10μW (top) and related numerical simulation (bottom), and (b) at
the center of the first BZ in the second band for Pin = 21μW (top) and related
numerical simulation (bottom).

of light intensity. Discrete MI may be observed only for a limited region of1

in-coupled light power in-between lower and upper MI thresholds [39]. Here2

the upper threshold arises from saturation of the nonlinearity, which stabilizes3

the system by decreasing the nonlinear gain and increases the threshold for4

the onset of MI.5

1.3.3 Discrete Vector Solitons6

Vector solitons [45] are composite structures that consist of two or more com-7

ponents which are individually incapable to form stable structures, but which8

mutually self-trap in a nonlinear medium. Discrete vector solitons (DVS) in 1D9

WAs are yet another, more complex class of vector solitons which have been10

investigated both theoretically [46–49] and experimentally [50,51]. Recently it11

has been recognized that both complex vector structures whose components12

stem from different bands [52–54] and composite band-gap solitons [55, 56]13

may be found in nonlinear periodic systems, too.14

First experiments on DVSs in 1D media have been performed by Stege-15

man’s group using AlGaAs WAs with cubic nonlinearity [50], where both TE16

and TM components have a single-hump structure. Whereas in these me-17

dia a separation of four-wave mixing processes and cross-phase modulation18
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Fig. 1.5. Discrete vector soliton formation. (a) Stationary profiles of TE (lhs)
and TM modes (rhs). Diamonds, squares, triangles and stars correspond to ν =
−5, −1, 0 and 1.1. (b) Measured stationary output of a DVS for mutually incoher-
ent input beams with power ratio PTE/PTM = 1.5, both components together (top),
TE (middle) and TM component alone (bottom, amplified 8 times).

is possible, these two terms are non-separable in arrays with saturable non-1

linearity [51]. Here the power of the dominating TE mode grows in a similar2

fashion as the on-site mode from Ref. [57], giving rise to speculations that such3

iso-frequency DVSs could be moved and routed across the array. Interestingly,4

the TM mode exhibits a splitting into a two-hump structure. Fig. 1.5 shows5

results obtained for a LiNbO3 WA with saturable defocusing nonlinearity.6

Numerically obtained stationary profiles of TE and TM modes for different7

values of soliton parameter ν are presented in Fig. 1.5a. The shape of the DVS8

slightly changes for different power ratios PTE/PTM, however, the center is9

mostly TE polarized while tails have dominant TM polarization. An experi-10

mental example for mutually incoherent input beams is given in Fig. 1.5b. As11

predicted, a dominating single-hump TE polarized component and a weaker12

double-humped TM component are observed [51].13

1.3.4 Higher Order Lattice Solitons14

It is well known that even 1D lattices support a wide spectrum of various15

strongly localized modes. Except the most often studied on-site and inter-site16

solitons (modes A and B, respectively) [58–64], various forms of lattice solitons17

such as twisted [36,61,65], quasi-rectangular [66], multi-hump solitons [67–70],18

and higher-order soliton trains [71] have been studied as well. Higher order19

lattice solitons are complex structures which may be intuitively viewed as a20

nonlinear combination of on-site solitons residing in adjacent channels. Such21

multi-hump structures are stable above a critical power threshold which can22

be estimated by linear stability analysis [68].23

Recently, higher order lattice solitons have been observed experimentally24

in a Cu-doped LiNbO3 WA using simultaneous in-phase excitation of two25

or three channels. Stationary profiles of such multi-humped solitons are pre-26

sented in Fig. 1.6a. Experimentally observed images of an even two-hump27

soliton, which has been excited by two individual in-phase Gaussian beams,28

and a three-soliton train, which has been excited by a single super-Gaussian29

beam, are shown in Fig. 1.6b. The corresponding numerical results are given30
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Fig. 1.6. Higher-order solitons in a WA. (a) Stationary profiles of an even two-hump
soliton (lhs) and a three-soliton train (rhs). (b) Experimental images on the output
facet for input power Pin = 10μW. (c) BPM results showing stable propagation of
two- and three-channel input excitations.

in Fig. 1.6c. Generally, the performed investigations indicate that the here1

used excitation of multi-humped solitons is quite efficient even in rather short2

arrays and confirm the possibility of dense soliton packing in form of soliton3

trains.4

1.3.5 Discrete Dark Solitons5

As noted in Ref. [59], the modes A and B can be seen as two dynamical states6

of a single mode moving across the array. The difference in their energy is7

related to the Peierls-Nabarro (PN) potential, which represents a barrier that8

has to be overcome in order to move a discrete soliton half of the lattice period9

aside. In media with cubic self-focusing nonlinearity the PN potential grows10

with increase of mode power, thus disabling stable propagation of mode B and11

free steering of large amplitude solitons [60,62]. On the other hand, in arrays12

with saturable nonlinearity it has been discovered that the PN potential can13

vanish and reverse its sign [36,63,72]. Therefore stable propagation of mode B14

becomes possible and solitons may be steered through the lattice. Numerical15

evidence of stable propagation of bright inter-site modes were presented for16

both saturable [63] and cubic-quintic nonlinearities [73].17

Beside bright solitons 1D lattices may support also dark discrete soli-18

tons [74–77]. Such solitons have one or more dark elements on a constant19

bright background and possess a π phase jump across the center of the struc-20

ture. In LiNbO3 arrays it has been demonstrated both analytically and exper-21
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�

mode Aa)

�

mode Bb)

Fig. 1.7. Formation of discrete dark solitons. (a) Phase profile of unstaggered on-
site dark soliton, formation of stable soliton state and guiding of a weak probe beam,
respectively. The inset shows the corresponding interferogram. (b) The same for the
unstaggered inter-site dark soliton.

imentally that the dark mode B can propagate in stable manner, too [64,76].1

Experimental results on dark soliton formation in a LiNbO3 WA are given in2

Fig. 1.7 [76]. On the lhs the situation for mode A with a phase jump located3

on-channel is monitored. The first row shows linear discrete diffraction of the4

dark notch, while in the nonlinear case (second row) a narrow dark soliton5

with staggered phase profile (see inset) is formed. The rhs shows the analogue6

situation for mode B, where the tailored input light pattern has been shifted7

by half a lattice period to locate the phase jump in-between channels. The8

lowest rows show the guiding of weak probe beams that are launched after9

the pump light was turned off. Here for mode A a single waveguide is formed10

while for mode B a two-channel-wide guiding structure is obtained.11

1.4 Interactions of Light Beams in One-Dimensional12

Photonic Lattices13

Among the most interesting properties of spatial optical solitons is the non-14

linear interaction that takes place when solitons intersect or propagate close15

enough to each other within the nonlinear material [78]. Especially in discrete16

media like coupled WAs, a realization of all-optical functions would strongly17

benefit from the inherent multi-port structure of the array. Therefore, optical18

lattice solitons are prominent candidates to become main information carri-19

ers in future all-optical networks, and many new applications like all-optical20

switching [79–83], steering [6,7,21,63,84–87], and amplification [88] have been21

proposed.22

1.4.1 Interactions with Defects23

Having in mind that perfectly periodic media do not exist, several groups24

have investigated the interaction of lattice solitons with various structural25

defects. Generally, defects can be created by changing the spacing of two26

adjacent waveguides in an otherwise uniform array [89], by variation of the27
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effective index or the width of a single channel [90, 91], or by optical induc-1

tion techniques [92]. Defects can either attract or repel solitons, and soliton2

trapping has been investigated in the presence of both linear and nonlinear3

defects [93]. In modulated arrays additional defects can be used for Bloch wave4

filtering [91], and the number of bounded modes in an array can be dynami-5

cally controlled [90]. On the other hand, uniform linear WAs with nonlinear6

defects have been proposed as suitable candidates for the observation of Fano7

resonances [94].8

1.4.2 Blocker Interaction9

Weak probe beams launched into a lattice will spread quickly in transverse10

direction because of evanescent coupling of energy among adjacent sites. How-11

ever, diffraction may be considerably reduced if the beam is launched at an12

angle corresponding to diffraction-less propagation [13]. Recently, interactions13

of such low-power (linear) probe beams with both coherent [95] and incoher-14

ent bright blocker solitons [96] have been studied in Kerr-like semiconductor15

WAs. In defocusing and saturable LiNbO3 arrays both bright and dark blocker16

solitons were used for probe beam deflection [97]. It has been also realized that17

such nonlinear processes, of which an example is presented in Fig. 1.8, are suit-18

able for the realization of all-optical beam splitters with adjustable splitting19

ratios.20

1.4.3 Collinear Interaction21

Interactions and collisions of discrete solitons have been investigated mainly22

numerically [7, 98–101]. Depending on the relative phase between the beams,23

their amplitude and the type of nonlinearity, soliton repulsion, fusion, and24

fission as well as energy transfer and oscillatory behavior have been observed.25

In arrays exhibiting a cubic nonlinearity and, in most experimental realiza-26

tions, also in saturable arrays, strong soliton beams are pinned to a certain27

channel. Therefore, mostly interactions of co-propagating parallel beams have28

been investigated experimentally [102, 103]. Fig. 1.9 presents an example of29

co-propagating solitons launched in-phase into two channels of a LiNbO330

WA [103]. Fig. 1.9a depicts a comparison between experimentally (top) and31

numerically (bottom) obtained results in the linear case of discrete diffraction.32

In the lower power regime (Fig. 1.9b) soliton fusion in the central channel is33

observed, a process that does not occur in cubic media [102]. In the region34

of higher power (Fig. 1.9c) an almost independent soliton-like propagation35

(pinning) of the two beams is found. Interestingly, in the case of out-of-phase36

beams in discrete media with self-defocusing nonlinearity, a pure oscillatory37

behavior of beams is found by means of numerical simulations [103].38

Interactions of counter-propagating solitons in 1D WA have been exper-39

imentally investigated in both LiNbO3 [104] and strontium-barium niobate40

crystals [105]. Main result is the experimental confirmation of the existence41
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Fig. 1.8. (a) Interaction scheme of a weak probe beam with a counter-propagating
bright blocker soliton. (b) Experimental setup (for notation see Ref. [97]).
(c), (d) Temporal evolution of the intensity on the output facet when a low-power
probe beam and a bright soliton beam of higher power intersect. (e), (f) BPM sim-
ulation of steady-state propagation of probe beam (propagation downwards) and
bright soliton (propagation upwards), respectively.

of three dynamical regimes predicted theoretically [106]. For low input power1

a regime of stable propagation of counter-propagating beams is found where2

vector solitons are formed. As this stable co-existence of counter-propagating3

beams does not exist in bulk media, this monitors the stabilizing effect of the4

lattice on soliton propagation. However, when the input power is increased, in-5

stability occurs also in the lattice leading to discrete beam displacements, and6

finally a regime of high optical power is reached showing chaotic dynamics.7

Beside in uniform WAs, various nonlinear effects have been investigated in8

engineered arrays [83, 107], binary arrays [108], double-periodic lattices [17],9
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Fig. 1.9. Comparison of in-phase interaction of two collinearly propagating beams
for different input powers in a defocusing lattice. Experimental output on endfacet
(top) and BPM simulation (bottom). (a) Discrete diffraction, (b) fusion of solitons
at low power, and (c) soliton-like propagation for higher input power.

chirped arrays [109] and arrays of curved waveguides [110]. Some other types of1

lattice solitons such as incoherent solitons [111], random phase solitons [112],2

polychromatic solitons [113] and surface solitons [114] will be covered in detail3

in other chapters of this book.4
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14. H.S. Eisenberg, Y. Silberberg, R. Morandotti, and J.S. Aitchison, Phys. Rev.1

Lett. 85, 1863 (2000)2

15. P. Yeh, A. Yariv, and C.-S. Hong, J. Opt. Soc. Am. 67, 423 (1977)3
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W. Królikowski, and Y.S. Kivshar, Opt. Lett. 31, 1498 (2006)25

88. A.B. Aceves, G.G. Luther, C. De Angelis, A.M. Rubenchik, and S.K. Turitsyn,26

Phys. Rev. Lett. 75, 73 (1995)27

89. R. Morandotti, H.S. Eisenberg, D. Mandelik, Y. Silberberg, D. Modotto,28

M. Sorel, C.R. Stanley, and J.S. Aitchison, Opt. Lett. 28, 834 (2003)29

90. H. Trompeter, U. Peschel, T. Pertsch, F. Lederer, U. Streppel, D. Michaelis,30

and A. Brauer, Opt. Express 11, 3404 (2003)31

91. A.A. Sukhorukov and Y.S. Kivshar, Opt. Lett. 30, 1849 (2005)32

92. F. Fedele, J. Yang, and Z. Chen, Opt. Lett. 30, 1506 (2005)33

93. L. Morales-Molina and R.A. Vicencio, Opt. Lett. 31, 966 (2006)34

94. A.E. Miroshnichenko and Y.S. Kivshar, Phys. Rev. E 72, 056611 (2005)35

95. J. Meier, G.I. Stegeman, D.N. Christodoulides, Y. Silberberg, R. Morandotti,36

H. Yang, G. Salamo, M. Sorel, and J.S. Aitchson, Opt. Lett. 30, 1027 (2005)37

96. J. Meier, G.I. Stegeman, D.N. Christodoulides, R. Morandotti, G. Salamo,38

H. Yang, M. Sorel, Y. Silberberg, and J.S. Aitchison, Opt. Lett. 30, 317439

(2005)40
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