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Saturable discrete vector solitons in one-dimensional photonic lattices
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Localized vectorial modes, with equal frequencies and mutually orthogonal polarizations, are investigated
both analytically and experimentally in a one-dimensional photonic lattice with defocusing saturable nonlin-
earity. It is shown that these modes may span over many lattice elements and that energy transfer among the
two components is both phase and intensity dependent. The transverse electrically polarized mode exhibits a
single-hump structure and spreads in cascades in saturation, while the transverse magnetically polarized mode
exhibits splitting into a two-hump structure. Experimentally such discrete vector solitons are observed in
lithium niobate lattices for both coherent and mutually incoherent excitations.
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Solitons or stable strongly localized nonlinear structures,
which can elastically interact with linear waves and other
solitons, have been studied in various systems in nature,
ranging from astrophysics [1] and ocean waves [2], down to
Josephson junctions [3] and nanowires [4]. These localized
structures exist due to an exact balance between two or more
counteracting effects such as, for example, dispersion and
nonlinearity in the temporal domain [5]. In the optical do-
main, solitons may exist in specific materials, such as Kerr
and photorefractive ones [6,7]. On the other hand, solitons
occur in different forms like incoherent, discrete, and vector
solitons, which are not directly related to a particular mate-
rial [5]. Vector solitons form a family of composite solutions
that consist of two or more components which mutually self-
trap in a nonlinear medium. Importantly, if not all compo-
nents are present simultaneously, such composite structures
cannot be observed. These entities have been studied, for
example, in carbon disulfide [8] and photorefractive crystals
[9]. In periodic nonlinear systems, the so-called discrete soli-
tons exist due to the balance between nonlinearity and dis-
creteness [ 10]. They have been observed in diverse physical
configurations such as biological systems, charge-transfer
solids, Josephson junctions, micromechanical oscillator ar-
rays, and photonic lattices. The latter have overtaken an im-
portant role in the study of nonlinear periodic systems
[11,12] due to compact setups with good control of relevant
parameters like diffraction coefficients and nonlinearities.
Such photonic crystals have periodic distributions of the re-
fractive index and light propagation is associated with al-
lowed bands and forbidden gaps, analog to propagation of
electrons in crystalline lattices [13].

One-dimensional (1D) discrete vector solitons (DVSs)
originating from the first band have already been investi-
gated both analytically [14-16] and experimentally [17] in
nonlinear cubic waveguide arrays (WAs). The two-
dimensional case was also studied [18]. Finally, multiband
vector solitons, in which individual components stem from
different bands, were also recently suggested and demon-
strated [19]. The aim of the present study is to investigate
DVSs in media with saturable nonlinearity. Prime examples
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of such media are photonic lattices in photorefractive crys-
tals. Additionally, semiconductors at higher light intensities
also exhibit saturation [20]. It has been shown that satura-
tion, which may occur in a cascade manner in discrete sys-
tems [21], is responsible for the existence of multiple zeros
of the Peierls-Nabarro potential, leading to free steering of
large amplitude solitons, and stable propagation of intersite
modes in 1D and 2D systems [22]. Various species of two-
component saturable DVSs have been investigated recently,
where it was assumed that both components have the same
polarization and different frequencies [23] and no power ex-
change is allowed. In what follows we are interested in the
experimentally realized situation where the components have
the same frequency but differ in polarization. These modes
can interact via cross-phase modulation and via an extra in-
teraction which permits the exchange of energy between
them.

By following the procedures outlined in Refs. [9,24], as-
suming only nearest neighbor interactions, and by using the
slowly varying envelope approximation, one may obtain the
following model equations:
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where L,u,=(Co—Ak)u,+Vy(u,, +u,_;) and L,v,=[Cyv,
+Vo(Uye1+0,-1)]/s;. Here & is the normalized propagation
coordinate (y in the experiment). The normalized envelopes
u, and v, correspond to transverse electrically (TE) and mag-
netically (TM) polarized fields, respectively. The parameter
B represents the nonlinear coefficient, the normalized cou-
pling constant is denoted by V,,, Ak is the normalized differ-
ence of TM and TE wave numbers, whereas C, can be re-
garded as a normalized propagation constant. By defining
birefringence An=n,—n, and average refractive index n,
=(n,+n,)/2, we write the function s;~1+jAn/n, with j
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=1,2,3. Finally, A=r,,./r, and B=r,,, /1., where r;; de-
note the components of the Pockels tensor [9]. One may
notice that in general, alike DVSs in Kerr media [15,17,18],
in our situation there exists no possibility to separate cross-
phase and four-wave mixing effects. A conserved quantity of
this model is the total power, P=3,(|u,|*+s|v,[*)=P,
+s5,P,. By using Eq. (1), it can be shown that dP/d&=0
implies

u

oP oP, 265,55 Im(v,u)
I - = A .
g e P+ 2+ sy, )

2)

This expression gives us information on the energy (power)
exchange among the TE and TM components which clearly
will depend on the total level of power in each waveguide.
By considering a one-channel constant-amplitude propaga-
tion of the form uy(&)=ugyexpliN\,é+¢,)] and vy(é)
=vg expli(\,&+ ¢,) ], where \; and ¢; correspond to the re-
spective propagation constants and initial phases, respec-
tively, we obtain the following expression for the power
transfer: dP,/dé~—sin(ANE+A @), where AN=N,—\, and
A¢=¢,—¢p,. By assuming only a linear and local depen-
dence of the propagation constants, from Eq. (1) we get \,,
=~ Cy—Ak,\,= Cy/s;, which results in A\ = Ak. If the com-
ponents are initially in phase (A¢=0), the power transfer
will be initially towards the TE mode provided that Ak <0,
and towards the TM mode otherwise [15].

To gain a theoretical background of the model (1), we use
a Newton-Raphson method to find coupled localized station-
ary solutions of the form u,(¢)=u,exp(i\,£) and v,(&)
=v, exp(i\, &), with u,,v, € R. For the sake of simplicity we
assume A,=N,=N\, which in turn disables the power ex-
change between DVS components [Im(v,u,)=0 in Eq. (2)].
These solutions may be regarded as the final stage of mode
profiles after the DVS is formed. The power dependence of
the two components on propagation constant, for the chosen
set of experimentally achievable parameters [25], is shown in
Fig. 1(a) in a logarithmic scale. The region of existence of
localized modes is between the low-amplitude and high-
amplitude limits for the upper band edge plane wave [22] of
the composed system of Eq. (1). In the present case, this
region corresponds to ~\ e {18,33}. The power of the TE
mode always exceeds that of TM polarization and, interest-
ingly, grows in a similar fashion as the power of the on-site
mode A in Ref. [21]. For any \, the TE mode is always a
one-hump structure [see Fig. 1(b)] which spreads trans-
versely in the region of saturation [21]. We may separate the
P\ diagram in smaller regions depending on the shape of the
TM mode. In region I [~\ € {20.7,33}], the TM mode cor-
responds to a one-hump structure [diamonds and squares in
Fig. 1(c)]. In region II [~\ €{19,20.7}], the TM mode cor-
responds to a two-hump structure separated by only one site
[triangles in Fig. 1(c)]. In the next regions, the TM mode
increases its distance between the two humps in an odd num-
ber of waveguides [as an example, see stars in Fig. 1(c)].

While the total power increases, local saturation takes
place [22]. As Ak<0, the TE mode is the one which gains
power. Therefore the TE mode starts to increase its power
locally together with the TM mode [region I in Fig. 1(a),

PHYSICAL REVIEW A 76, 033816 (2007)

InP
AN O N B O

(a)

lu, ?
21 23 25 27 29
(b) waveguide number
Vi ?
21 23 25 27 29
(© waveguide number

FIG. 1. (Color online) (a) TE (dashed line) and TM (continuous
line) powers as a function of the propagation constant. Vertical lines
separate regions. (b) and (c) TE and TM profiles, respectively: Dia-
monds, squares, triangles, and stars corresponds to A=23, 21, 20,
and 18.8, respectively. Co=—Ak=-B=10, V,=1.

diamonds and squares in Figs. 1(b) and 1(c)]. However,
above some critical level of power [region II in Fig. 1(a),
triangles in Figs. 1(b) and 1(c)] the local power in the center
site is too high and the only possibility for the TM mode to
exist is by exploring the neighborhood looking for a more
stable configuration. Then, the TE mode further increases its
power but now, due to saturation, by increasing the ampli-
tudes in the next sites [see stars in Fig. 1(b)]. Again, the TM
mode finds a new configuration which is initially stable, but
now the separation between peaks consists of three sites
[stars in Fig. 1(c)]. If we continue increasing the power we
observe that the TE mode preserves its one-hump structure,
by increasing its width, while the TM mode has a two-hump
structure where the separation between peaks continuously
increases. Therefore the DVS is mostly TE polarized, except
at tails which have a dominating TM polarization. The linear
stability analysis of solutions coincides with the Vakhitov-
Kolokolov criterion [5]: Modes are stable for dP/J\ <0, and
unstable otherwise. This implies that in region I solutions are
always stable and, in the next regions, there exist both stable
and unstable subregions [see Fig. 1(a)].

To verify our theoretical predictions we use the experi-
mental setup sketched in Fig. 2. A cw laser with wavelength
532 nm is split into two orthogonally polarized (TE and TM)
mutually coherent waves with the help of a polarizing beam
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FIG. 2. Scheme of the experimental setup.

splitter (PBS). Optionally, to allow for mutually incoherent
interaction of the two components, a TM polarized wave can
be provided by a second laser of the same wavelength. Input
power is adjusted with a combination of half wave plate \/2
and polarizer P. The two input beams are used to excite
narrow single-channel TE and TM polarized modes of the
WA by using a 40X microscope lens (ML). This nonlinear
WA is fabricated in x-cut lithium niobate doped with copper.
The length of our sample along the propagation y-direction is
11 mm (~ eight diffraction lengths) and the array consists of
250 parallel titanium in-diffused waveguide channels that are
4 pm wide with a separation of 4.4 um (grating period A
=8.4 um) [26]. A second ML images the intensity from the
output face onto a charge-coupled device camera, where an
additional polarizer P allows for independent observation of
both TE and TM components of the DVS.

The nonlinear dynamics of TE only, TM only, and both
TE and TM modes (mutually coherent from the same light
source) is presented in Fig. 3. Here we make use of the fact
that, in photorefractives crystals, the nonlinearity grows ex-
ponentially in time, B(t)=B(1—-exp[-t/7]), where 7 is the
dielectric response time [27]. Initially, after switching on the
light (r=0), discrete diffraction is monitored for each situa-
tion. Although one may observe initial focusing of the TE
mode within the first minutes in Fig. 3(a) (an even weaker
effect is observed for TM), both modes alone are incapable
to form a localized structure due to the low individual level
of power [Figs. 3(a) and 3(b)] [28]. On the other hand, when
both input polarizations are present [Fig. 3(c)] a very well
localized five-channel DVS is formed after r=30 min and
does not change its shape for another 2 hours of observation.

Stationary images of DVSs collected from the output
facet of the sample for a fixed value of TE power and differ-
ent values of TM power are presented in Fig. 4(a). As can be
seen, the shape of the DVS slightly changes for different
power ratios P,/P,. TE and TM polarized components for a
power ratio P,/P,=1 (steady state) are shown in Fig. 4(b).
As predicted, a dominating single-hump TE polarized com-
ponent and a weaker double-humped TM component are ob-
served. The role of the TM input polarization can be further
analyzed by blocking the TE input after stable formation of
the DVS in Fig. 4(c). Obviously the TM polarized input light
has transferred most of its energy to the TE component,
forming a single-hump solution, while the remaining power
is trapped in form of a two-hump solution [within several

PHYSICAL REVIEW A 76, 033816 (2007)

o9 © © e9 oo

e o
FEEYYE ELE K

Lo IR

FIG. 3. (Color online) Experimentally observed DVS for mutu-
ally coherent input beams. Temporal nonlinear evolution of output
intensity for (a) TE component alone (P,=150 uW), (b) TM com-
ponent alone (P,=300 uW), and (c) both components together
(P,=150 uW, P,=300 uW).

minutes, this structure decays into the one of Fig. 3(b)]. The
energy transfer, from ordinary to extraordinary polarization
(TM—TE), is due to a specific anisotropic nonlinearity in
LiNbO; [this corresponds to the case Ak<<0]. The mecha-
nism of coupling of orthogonally polarized modes is ex-
plained by writing holographic gratings due to photovoltaic

PP, =3
PP, =1
P/P,=0.3

b
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TM (X40)

FIG. 4. (Color online) Mode analysis of stationary DVSs. Sta-
tionary output intensity for (a) DVS (TE+TM) for different power
ratios P,/P,, (b) TE and TM (amplified 40X) polarized compo-
nents for P,/P,=1, and (c) TE and TM polarized components for
P,/ P,=1 immediately taken when TE beam is blocked after forma-
tion of the DVS.
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FIG. 5. (Color online) Experimentally observed DVS for mutu-
ally incoherent input beams. Stationary output intensity for (a) DVS
[TE+TM] for P,/P,=1.5, (b) TE polarized component, and (c) TM
polarized components (amplified 8 X).

currents. Light is anisotropically diffracted from these shifted
gratings with polarization conversion, which leads to an en-
ergy exchange among the modes [29].

Energy coupling of orthogonally polarized waves can be
prevented by using mutually incoherent input beams [B=0 in
Eq. (1)]. Experimentally this is realized by a second laser of
the same wavelength (see Fig. 2), which now provides the
TM polarized input beam, and corresponding results for the
steady-state DVS formation are shown in Fig. 5. Again a
two-hump structure is observed for the TM component,
which now guides a significant part of the total power of the
soliton.
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In conclusion, we suggested a rather general theoretical
model to describe saturable discrete vector solitons having
orthogonally polarized components. Power transfer and cou-
pling between TE and TM components are investigated as
well as the corresponding localized stationary solutions. We
discovered that these composite solitons might have different
width and shape depending on the region of parameters. The
dominating TE mode is single-humped while the weaker TM
mode may exhibit both one- and two-hump structures. We
confirm our findings experimentally by using either coherent
or mutually incoherent excitations, where the latter is used to
suppress energy coupling in formation of discrete vector soli-
tons. Our experimental conditions match the region II of sta-
tionary solutions, a region with an intermediate level of
power and highly localized solutions. This is because the
one-channel input used in the experiment excites a strongly
localized region of the array with high local intensity. The
results obtained here could be useful in the codification of
signals, filtered by polarization, in future all-optical commu-
nication networks.
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