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Observation of higher-order solitons in defocusing
waveguide arrays
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We observe experimentally higher-order solitons in waveguide arrays with defocusing saturable nonlinear-
ity. Such solitons can comprise several in-phase bright spots and are stable above a critical power threshold.
We elucidate the impact of the nonlinearity saturation on the domains of existence and stability of the ob-
served complex soliton states. © 2007 Optical Society of America
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Transverse periodic refractive index modulations
strongly affect light propagation, and in combination
with nonlinearity, they can result in the formation of
discrete and lattice solitons encountered in various
settings [1], including waveguide arrays imprinted in
semiconductors [2,3], photonic lattices [4–7], and ar-
rays made in photovoltaic crystals [8,9]. Importantly,
the last of these exhibit saturable nonlinearities that
strongly impact lattice soliton properties. Thus, non-
linearity saturation results in swapping of the stabil-
ity properties between different soliton families [10]
and radiationless propagation of tilted beams across
the lattice [11,12]. Periodic lattices support gap soli-
tons [3,4,7–9], dark and antidark solitons [13], even
and twisted solitons [14], or higher-order soliton
trains [10,15,16]. Higher-order solitons have been
also studied in two-dimensional lattices [17–20].
While the existence of higher-order lattice solitons in
focusing media was confirmed in experiments, to our
knowledge higher-order solitons in defocusing lat-
tices have never been observed to date.

In this Letter we report on the experimental obser-
vation of higher-order solitons in a waveguide array
imprinted in a LiNbO3 crystal with defocusing satu-
rable nonlinearity. Such higher-order solitons com-
prise several in-phase bright spots, and we found
that they are stable above a certain critical power
level. We show that nonlinearity saturation strongly
impacts the domains of soliton existence and stabil-
ity.

To elucidate the conditions for higher-order soliton
formation in defocusing lattices we explore their
properties theoretically. We consider the nonlinear
Schrödinger equation for a dimensionless field ampli-
tude q describing beam propagation in a defocusing
saturable medium:
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Here the longitudinal � and transverse � coordinates

are normalized to diffraction length and beam width,
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respectively, S is the saturation parameter, p is the
lattice depth, and the function R���=cos2���� de-
scribes the refractive index profile. The values of pa-
rameters in Eq. (1) were set in accordance with the
actual data of our sample. Thus, for a beam width of
�5 �m and wavelength �=532 nm, a lattice period
7.6 �m corresponds to �=2.067, a lattice depth p
�17 corresponds to a refractive index variation �n
�0.0022, a crystal length of 25 mm corresponds to �
=38, and the maximal nonlinear contribution to the
refractive index due to photovoltaic effect �nnl�2
�10−4 yields S�0.5. For generality, we also consider
other p and S values, keeping � fixed. Equation (1)
conserves the energy flow U=�−�

� �q�� ,���2d�.
We search for soliton solutions of Eq. (1) in the

form q=w���exp�ib��, where b is the propagation con-
stant. Soliton solutions are encountered for propaga-
tion constants falling into finite gaps of the lattice
spectrum. Here we focus only on the first finite gap,
where the lowest-order odd soliton acquires its inten-
sity maximum in the lattice maximum. The lattice
can also support complex soliton structures that
might be intuitively viewed as nonlinear combina-
tions of odd solitons residing in adjacent channels.
The simplest even solitons of this type resembling in-
phase combinations of odd solitons are shown in Figs.
1(a) and 1(b). Expansion across the lattice for b val-
ues in the vicinity of the gap edges [Fig. 1(a)] is re-
placed by a strong soliton localization into two bright
spots in the middle of the gap [Fig. 1(b)]. The stron-
ger the lattice the higher the soliton localization in
the gap depth. For large enough S the energy flow of
even solitons is a monotonically decreasing function
of b everywhere, except for narrow regions close to
the upper and lower cutoffs for existence [not visible
in Fig. 1(c)], where dU /db	0.

In contrast with the cubic case, in saturable media
the domain of existence of even soliton does not oc-
cupy the whole gap. At fixed p the lower cutoff blow
coincides with the lower gap edge; however, when the
saturation parameter exceeds a certain minimal
2007 Optical Society of America



July 1, 2007 / Vol. 32, No. 13 / OPTICS LETTERS 1951
value (Sm�0.12 for p=17) the cutoff blow increases
with S. Similarly, the upper cutoff bupp always
amounts to smaller values than the upper gap edge
but approaches it as S→0. With increasing S the cut-
off bupp decreases, so that at a certain critical value of
S (Scr�1.74 for p=17) the domain of existence of
even solitons shrinks [Fig. 1(d)]. This is in contrast
with the existence domain for usual odd solitons,
which never vanishes with increasing S. The width of
the existence domain for even solitons in the plane
�p ,b� decreases with decreasing p and shrinks com-
pletely when p decreases below a critical value (pcr
�7.23 for S=0.5). Thus, too-shallow lattices cannot
support even solitons. In deep lattices the upper cut-
off bupp gradually approaches the upper gap edge,
while blow�bupp−1/S. Soliton localization in the vi-
cinity of cutoffs is determined by the location of blow
or bupp inside the gap.

Linear stability analysis indicates that even soli-
tons are stable for high enough energy flows, when
blow
b
bcr. The critical propagation constant for
stabilization is depicted by the (red dashed) curve in

Fig. 1. (Color online) Profiles of even solitons with (a) b
=11.34 and (b) b=10 at p=17 and S=0.5. (c) Energy flow
versus propagation constant at p=17. (d) Domains of exis-
tence for even solitons on the �S ,b� plane at p=17 and (e)
on the �p ,b� plane at S=0.5. The (red dashed) curve in (d)
indicates the upper border of the stability domain. (f) Real
part of perturbation growth rate versus propagation con-
stant at p=17, S=0.5.
Fig. 1(d). We found only a domain of oscillatory insta-
bility near the upper cutoff for existence (at bcr
b

bupp), where a perturbation may cause the decay of
an even soliton into an odd one, and very narrow do-
mains of exponential instability in the regions adja-
cent to cutoffs where dU /db�0. In Fig. 1(f) we plot
the dependence of real part �r of perturbation growth
rate �=�r+ i�i on the propagation constant, where one
can clearly see that �r vanishes at b=bcr. The maxi-
mal growth rate decreases with S, so that close to Scr
the domain of instability vanishes. Importantly,
stable combinations of multiple in-phase odd solitons
that feature properties similar to those of even soli-
tons are possible, too. Thus, defocusing optical lat-
tices allow the formation of stable extended soliton
trains.

To confirm this prediction experimentally, we used
a 25 mm long waveguide array with a period of
7.6 �m fabricated in copper-doped LiNbO3. The fab-
rication procedure of such arrays, consisting of about
250 channels, has been described in detail elsewhere
[8]. In our setup, a CW frequency-doubled YVO4 la-
ser, �=532 nm, illuminates an amplitude mask con-
taining two circular holes, which are imaged onto the
sample input facet to excite two adjacent in-phase
channels of the array. Alternatively, a single focused
Gaussian beam can be used for simultaneous in-
phase excitation of two or three channels, where the
width of this beam is adjusted with the help of a cy-
lindrical lens in front of the microscope lens used for
incoupling. The output patterns on the sample end
facet are imaged onto a CCD camera.

In Fig. 2(a) linear discrete diffraction of light from

Fig. 2. (Color online) Experimental observation of discrete
diffraction, an even soliton, and a three-soliton train. Ex-
perimental images at the output crystal face are superim-
posed on the theoretical plots, showing the propagation dy-
namics inside the crystal. (a) Discrete diffraction in the
linear regime. (b) Excitation of an even soliton with two
Gaussian beams with amplitude A=5 and width W=0.5
launched into adjacent channels. (c) Excitation of such a
soliton by a single beam with A=5 and W=1 launched in
between channels. (d) Excitation of a three-soliton train
with a broad super-Gaussian beam with A=5 and W=2.3.

In all cases p=17 and S=0.5.
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a single excited channel is monitored, from which we
can estimate a coupling length of Lc�4.5 mm in our
sample. Even solitons and higher-order soliton trains
form when the amplitude and width of in-phase
beams launched into neighboring channels are prop-
erly adjusted. An illustrative example of the observed
images from the sample end facet is shown in Fig.
2(b), where the amplitude mask was employed to ex-
cite two in-phase beams with incoupled power of
10 �W. The observations are in agreement with
simulations for Gaussian beams, i.e., A exp�−�� /
W�2�. Alternatively, even solitons may also be excited
with a single beam of the same optical power that is
launched between two lattice channels [Fig. 2(c)],
while higher-order trains can be excited using a
broader beam that covers several channels [Fig.
2(d)]. This is consistent with numerical simulations,
which in this case were conducted with super-
Gaussian inputs A exp�−�� /W�4�. In all cases, the
simulations indicate that soliton excitation is effi-
cient and occurs with short sample lengths.

We also investigated the temporal dynamics of
even soliton formation (Fig. 3). The linear output pat-
tern in Fig. 3(a) is a superposition of the discrete dif-
fraction [see Fig. 2(a)] of two single-channel excita-
tions. In Fig. 3(b) the buildup of an even soliton for
excitation with two in-phase Gaussian beams is dis-
played. Initially, asymmetries in the output pattern
during buildup of the nonlinearity are observed,
which we attribute to fragility of soliton trapping in
the vicinity of low-power cutoff. Note that during this
transient stage, higher input powers would be re-
quired for stable propagation of even excitations than
in the steady-state regime, when the nonlinearity
strength is higher. As a result, for a fixed input power
one observes the transition between stages of linear
diffraction, unstable propagation, and stable propa-

Fig. 3. (Color online) Observed temporal dynamics of the
formation of even solitons. (a) Discrete diffraction and (b)
temporal buildup of the even soliton for excitation with two
in-phase Gaussian beams. In (c) the input beam on the
right-hand side is blocked at t=0 s. Light energy starts to
oscillate in the directional-coupler-like waveguiding struc-
ture and finally forms a narrow odd soliton in the excited
channel.
gation upon temporal buildup of nonlinearity. In Fig.
3(c) we have blocked one of the input beams after for-
mation of the even soliton, and the temporal dynam-
ics shows a conversion of the output pattern into an
odd soliton. This conversion is accompanied by tran-
sient energy oscillation among the two channels.

In summary, we have observed experimentally and
analyzed theoretically higher-order solitons in one-
dimensional waveguide arrays in defocusing satu-
rable nonlinear media. Our observations highlight
the important effects afforded by nonlinearity satura-
tion and confirm the possibility of packing of several
lattice solitons into compact stable trains.
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