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Tamm oscillations in semi-infinite nonlinear
waveguide arrays
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We demonstrate the existence of nonlinear Tamm oscillations at the interface between a substrate and a
one-dimensional waveguide array with either cubic or saturable, self-focusing or self-defocusing nonlinear-
ity. Light is trapped in the vicinity of the array boundary due to the interplay between the repulsive edge
potential and Bragg reflection inside the array. In the special case when this potential is linear these oscil-
lations reduce themselves to surface Bloch oscillations. © 2007 Optical Society of America
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The problem of surface waves that could exist at the
interface between two different media has been stud-
ied for several decades. In linear optics, surface
waves in periodic media have been proposed by
Kossel.3 Recently it has been suggested that these
surface states may also exist at the interface between
a homogeneous medium (substrate) and a nonlinear
waveguide array4 (WA). Up to date, WAs have been
fabricated in materials exhibiting cubic,5,6

quadratic,7 saturable,8,9 and nonlocal nonlinearity.10

Discrete solitons,5,7,8,11 diffraction management,6

modulational instability,9 and Bloch oscillations12 are
just a few examples of phenomena that have been ob-
served in such systems.

The first experimental observation of discrete sur-
face solitons in AlGaAs WAs exhibiting a cubic self-
focusing nonlinearity13 has triggered further investi-
gations of surface waves at the interface between a
WA and a substrate. The existence of surface gap soli-
tons in the lattice with cubic self-defocusing nonlin-
earity has been reported in Ref. 14. A crossover from
nonlinear surface states to discrete solitons was stud-
ied, too.15 In these two papers it has been revealed
that the vicinity of the edge enables a stable propa-
gation of various localized modes, such as flat-top
modes and intersite modes.16 Very recently, strongly
localized surface waves have been observed in WAs
exhibiting saturable17 and quadratic nonlinearity,18

respectively. In this Letter we reveal the existence of
Tamm oscillations at the edge of a semi-infinite WA.
These oscillations are the result of an interplay be-
tween a repulsive potential that originates from the
boundary and the array’s periodicity. We calculate
this potential for a few different media and reveal
that Tamm oscillations are more likely to occur in
systems with stronger coupling.

Light propagation in a periodically stratified struc-
ture is described by a set of coupled nonlinear ordi-

nary differential equations:
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d�
+ C�Un+1 + Un−1 − 2Un� − g��Un�2�Un = 0, �1�

where g��Un�2�=� �Un�2 in cubic �c� media and
g��Un�2�=� �Un�2 / �1+ �Un�2� in saturable �s� media,
while the nonlinearity coefficient ��0 for the
self-focusing �f� and ��0 for the self-defocusing �d�
case. Here C is the coupling constant, � is the propa-
gation coordinate, and Un is the normalized electric
field envelope in the n-th waveguide. Integrals of
motion are power P=�n �Un�2 and Hamiltonian
Hs=�n�C �Un−1−Un�2−��ln�1+ �Un�2�− �Un�2��, Hc
=�n�C �Un−1−Un�2+� �Un�4 /2�.

Assuming stationary solutions of staggered form
Un=Fnexp�i�−��+n��� (� represents soliton fre-
quency) for defocusing cases, and of unstaggered
form Un=Fnexp�−i��� for focusing cases, together
with the assumption �F0 � � �F±1 � � �F±2� for on-site (A)
mode and �F±1 � � �F±2 � � �F±3� for intersite (B) mode,
one may find the following expressions for the maxi-
mal amplitude in the array: F0s�f,d�

=	��−2C� / ��−�+2C�, F0c�f,d�=	��−2C� /�, F1s�f�

=	��−C� / ��−�+C�, F1s�d�=	��−3C� / ��−�+3C�,
F1c�f�=	��−3C� /�, F1c�d�=	��−C� /�. In addition, we
have Fn��0�=�nF0 for mode A and Fn��1�=�n−1F1 for
mode B. Here �= ±C / ��−2C� for �d� and �f� cases, re-
spectively. Examples of the oscillatory behavior of
both on-site and intersite modes are depicted in
Fig. 1. Here the energy is too low to overcome the re-
pulsive potential from the edge of the array, so both
modes start to move away from the interface until
they are Bragg reflected. As this traversing is usually
accompanied with radiation, reflected modes lose
power and eventually do not reach back to the first
channel of the array. As a result, successive oscilla-

tions have increasing period lengths and modes
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gradually run away from the edge, eventually being
trapped at one channel after several periods.

We calculate the effective repulsive potential as the
difference between the truncated potential and a ref-
erence potential with periodic boundary condition
(i.e., for an infinite array), and present results for
mode A in an array consisting of 2n+1 elements, and
mode B in an array consisting of 2n elements, where
n is an integer. As the peak of these localized struc-
tures (with highest amplitude F
F0 for A and F

F1 for B) approaches the edge, more terms of the
corresponding Hamiltonian have to be truncated.15

For example, if the peak of mode A resides in the 0th
channel �−n ,−n+1, . . ,−1,0,1, . . ,n−1,n� and the
peak of mode B between the channels −1 and 1 �−n ,
−n+1, . . ,−1,1, . . ,n−1,n�, we obtain

Vrep
s�p� = ��

i=0

p−1

�ln�1 + �2�n−a−i�F2� − F2�2�n−a−i��

+ F2C��2�n−a−p� − �1 + ��2�
i=1

p

�2�n−a−i�� , �2�

Fig. 1. (Color online) Tamm oscillations of (a) mode A with
C=0.5, �� � =3.34, and soliton frequency �=2.3 launched
into the first channel, and (b) mode B with C=0.5, �� �
=3.34, and soliton frequency �=4.83 launched into the sec-
ond and third channels.

Fig. 2. Dependence of the effective repulsive potential on
2
�F0� =0.24, and different values of C. (b) Self-defocusing case: C
Vrep
c�p� = −

�

2
F4�

i=0

p−1

�4�n−a−i� + CF2�2�n−p−a�

− CF2�1 + ��2�
i=1

p

�2�n−i−a� �3�

for lattices with saturable and cubic nonlinearity, re-
spectively. Here p denotes the number of the trun-
cated channels, where pmax=n, a=0 for mode A, and
pmax=n−1, a=1 for mode B.

The dependence of the repulsive potential on the
distance from the edge is presented in Fig. 2. Stron-
ger coupling results in stronger repulsion [Fig. 2(a)],
while stronger nonlinearity decreases the repulsive
potential [Fig. 2(b)]. Beams that are strongly pushed
off from the edge will experience Bragg reflection in-
side the array earlier than weakly rejected beams.
Thus the same input beam will have shorter spatial
periods of Tamm oscillations in arrays with stronger
coupling and weaker nonlinearity. The value of the
corresponding repulsive potentials also depends on
the soliton frequency �. For a fixed value of � and
fixed values of parameters C and �, the following re-
lation is usually fulfilled: Vrep

sd �Vrep
cd �Vrep

sf �Vrep
cf , but

interior elements may permute their position as well.
This relation may explain why this effect has not
been observed in recent studies in AlGaAs WAs with
cubic self-focusing nonlinearity.4,13 The impact of
saturation on the repulsion from the interface in an
unstaggered case was discussed recently.19 Interest-
ingly, in the case when Vrep is a linear function from
the interface distance the input beam will experience
Bloch oscillations, which has considerable potential
for application in all-optical devices.20

To check our findings we numerically solve the fol-
lowing nonlinear paraxial wave equation [from
which, in fact, one can by appropriate discretization
obtain Eq. (1)]:

i
�E

�y
+

1

2k

�2E

�z2 + k
n�z� + �nnl

ns
E = 0. �4�

Here light propagation is along the y-axis, E is elec-
tric field amplitude, k=2�ns /	 is the wavenumber for
wavelength 	, and ns is the substrate index. The pe-
riodic index modulation of the WA is n�z�, while �nnl
is the nonlinear refractive index change ��nnl�ns�

istance from the boundary. (a) Self-focusing case: �� � =3.1,
2

the d

=0.5, �F0� =0.172, and different values of �.
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for cubic ��nnl=�n0I� and saturable ��nnl=�n0I / �I
+Id�� media. Here I is the peak light intensity and Id
is the so-called dark irradiance.8 We used parameters
of lithium niobate WA exhibiting a self-defocusing
saturable nonlinearity (�n0=3.7
10−4, �nnl�0.001)
and 	=532 nm. For such samples the periodically
modulated refractive index can be well approximated
by a cos2 function.9 Some numerical results that sup-
port our former findings are given in Fig. 3. Similar
results are obtained for different perturbed wider in-
put structures with and without an initial phase off-
set. Figure 4 may be understood as a numerical proof
that these oscillations are indeed a surface effect.
Keeping the light intensity necessary to form Tamm
oscillations [Fig. 4(a)] constant and shifting the posi-
tion of input beam towards the interior of the array,
the period of Tamm oscillations increases whereby
light distribution narrows. In Fig. 4(b) a narrow
breather is formed in a channel that is only two chan-

Fig. 3. (Color online) Tamm oscillations in a WA with pe-
riod 8.4 �m and �n0=3.7
10−4. Input patterns with ampli-
tude ratios 1:0.5:0.1 are launched into the first channel.
(a) Self-defocusing saturable case �nnl=6.2
10−4, r=I /Id
=6; (b) self-defocusing cubic case �nnl=4.42
10−4; (c) self-
focusing saturable case �nnl=3.34
10−4, r=6; and (d) self-
focusing cubic case �nnl=2.62
10−4.

Fig. 4. (Color online) Saturable defocusing WA with input
profile and lattice parameters from Fig. 3, but �nnl=6.21

10−4 and r=6. Input beam is launched into (a) first and
(b) third channels.
nels away from the substrate array interface.
In conclusion, we demonstrate the existence of
Tamm oscillations at the interface between a sub-
strate and a one-dimensional homogeneous nonlinear
WA. Light is trapped in the vicinity of the edge of the
array due to the interplay between the edge repul-
sion and Bragg reflection. Approximate analytical ex-
pressions for the repulsive truncated potential are
given for different types of nonlinearities as well as
for different system parameters. These oscillations
reduce to the case of Bloch oscillations when the re-
pulsive potential is a linearly decreasing function of
the distance from the edge of the semi-infinite WA.
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