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Observation of modulational instability in discrete
media with self-defocusing nonlinearity
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We report what we believe is the first observation of modulation instability in the anomalous-diffraction
regions of a photonic lattice. The experiments were carried out in a 1D waveguide array fabricated in a
lithium niobate crystal displaying the photovoltaic self-defocusing nonlinearity, and our results are con-
firmed numerically by simulating the nonlinear beam propagation. © 2006 Optical Society of America
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Modulational instability (MI) is a nonlinear wave
phenomenon that manifests itself as the breakup of
an extended state of a system into a train of highly
localized states. In homogeneous nonlinear media,
the extended state is a plane wave, which, under the
action of a self-focusing nonlinearity, breaks up spon-
taneously into multiple filaments. In periodic sys-
tems, the extended states are Floquet–Bloch (FB)
modes, which can also undergo MI: FB modes exhib-
iting normal diffraction experience MI in the pres-
ence of self-focusing, whereas FB modes displaying
anomalous diffraction break up under self-
defocusing. Very often, the breakup process ends up
in a train of equally spaced solitons, with the spacing
being inversely proportional to the spatial frequency
of the highest nonlinear gain. As such, the MI process
is intimately related to the formation of solitons.1 MI
is considered a universal phenomenon that appears
in many branches of nonlinear science. For example,
MI has been investigated in neutrino–antineutrino
interactions,2 pulsar plasma,3 atomic vapors,4 laser–
plasma interaction,5 easy-axis antiferromagnetic
chains,6 and Bose–Einstein condensates.7,8 In the op-
tics case, MI has been observed in fibers,9 liquid
crystals,10 nonlinear cavities,11 photorefractive
crystals,12–14 quadratic media,15 and by using spa-
tially incoherent light beams.16,17 The existence of
discrete MI has been suggested in Ref. 18.

In this Letter we explore MI in a periodic nonlinear
optical lattice.18–24 Periodic structures such as wave-
guide arrays and photonic crystal fibers can now be
rather easily fabricated, enabling the investigation of
various associated linear and nonlinear effects such
as FB oscillations,25 discrete diffraction,26 and lattice
or gap solitons.27 The linear modes in such periodic
lattices are extended FB modes, with a transmission
spectrum consisting of allowed bands separated by
forbidden gaps. In the nonlinear case, the modes ex-
perience instabilities and break up into spatially
modulated patterns of high regularity.

MI may be regarded as the first step toward energy
localization in 1D lattices with self-focusing Kerr
nonlinearity.18,22 The first experimental observation
of discrete MI in AlGaAs arrays that exhibit cubic
nonlinearity was reported during 2004.19 On the
other hand, again in the Kerr case, working at the
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edge of the first Brillouin zone, Kivshar proposed
that plane-wave solutions of staggered form (adja-
cent elements of the array are out of phase) can also
experience MI, provided that the array exhibits a
self-defocusing nonlinearity.23 Here we confirm ex-
perimentally the theoretical prediction of the exis-
tence of MI in the first band of a 1D periodic system
with defocusing saturable nonlinearity that has been
reported recently.24 In general, saturation has a sta-
bilizing role: it increases the threshold for the onset
of MI and decreases the MI gain.

Permanent 1D waveguide arrays are fabricated us-
ing x-cut lithium niobate wafers of congruently melt-
ing composition. A typical sample size is 1 mm
�17 mm�7.8 mm along the crystallographic x, y,
and z axes, respectively.28 The ferroelectric c axis co-
incides with the z axis, while the channels are di-
rected along the y axis. Waveguides with a width of
4 �m that are separated by 3.6 �m (lattice period �
=7.6 �m) are fabricated by Ti indiffusion in a sample
that is additionally surface doped by diffusion of Fe
to enhance the photorefractive effect. The resulting
nonlinearity is of a saturable type, which results
from both the relatively high dark conductivity of the
sample ��d�10−13 VA−1 m−1� and the limited number
of electron traps. Each separate channel forms a
single-mode waveguide for TE polarized light. The
resulting refractive index profile of our sample at an
effective depth (measured from the surface), where
the mode intensity has its maximum, is given by
n�z�=ne+�n�z�=2.2420+0.0063 cos2��z /��. The cal-
culated bandgap diagram of the waveguide array in
which the propagation constant ��=�−2�ne /� is re-
lated to the transverse Bloch wavenumber kz is pre-
sented in Fig. 1. Regions of anomalous diffraction in
the first band are hatched and marked with arrows.
In these regions discrete MI may occur as a result of
the interplay between self-defocusing nonlinearity
and anomalous diffraction. Note that at the edges of
the first Brillouin zone in the second band the diffrac-
tion is normal, disabling the occurrence of this
instability.

We excited FB modes in the array by use of the
prism coupling method shown in Fig. 2, with green
light ��=514.5 nm�. Here the propagation constant �

of a FB mode may be chosen by variation of coupling
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angle 	, while transverse wave vector kz can be
determined by an angle 
 between the directions
of input light and waveguide array �

=arcsin��kz�� /2�neff��.

29 The general advantage of
this method is a well-defined excitation of desired
modes of the array. Also, it represents an easy tool to
analyze the excited FB mode spectra, which may re-
sult from a nonlinear interaction inside the sample,
by using a similar prism for outcoupling of the light.
Here we use only one rutile prism with internal angle
� for excitation of FB modes while the intensity pat-
terns on the end facet of the sample are monitored by
a CCD camera.

Experimentally we excited all 250 channels of our
sample (power per channel, 0.5 �W). In Fig. 3 data
collected by the CCD camera that images the rear
facet of the array after 15 mm of propagation are
given. We monitored the temporal evolution of light
intensity in the selected part of the array for the first
and second bands, respectively, where we take ad-
vantage of the fact that the photovoltaic nonlinearity
grows until saturation as a function of time. As ex-
pected from theory, we did not observe MI at the base
of the Brillouin zone in the first band where all chan-
nels are excited in phase. Then the phase difference
between adjacent elements of the array was adjusted
to be approximately � by fixing the angle 
 to 

=0.9°. The respective pictures for times t=0 monitor
the linear case where no nonlinearity has built up yet
(the intensity modulations still observable for t=0

Fig. 2. Geometry of the prism coupler setup used to excite
certain FB modes of the 1D waveguide array.

Fig. 1. Dispersion relation of our 1D waveguide array. The
shaded regions are gaps in which light cannot propagate.
The arrows point to the regions of anomalous diffraction
within the first band. The value ��=0 is given relative to
the propagation constant of a substrate mode.
are weak and result from varying coupling efficiency
of the prism coupler and small sample defects). In the
first band one may notice focusing of light and forma-
tion of localized staggered solitonlike structures that
comprise approximately four channels, with a
buildup time of typically 2–5 min. For longer illumi-
nation times finer intensity structures appear, prob-
ably as an outcome of nonlinear coupling to higher
FB modes and interference effects. Furthermore, an
increase of the spatial frequency of the soliton trains
with increasing input power is observed. On the
other hand, in the second band there is no observable
change in the light intensity distribution, however,
nonlinear coupling to higher modes is observed as
well. Please note that for the second band intensity
maxima are laterally shifted, as now the light is
guided between the waveguide channels. This is
shown in Fig. 3, where results for the first 20 min of
illumination are given, thus confirming the theoreti-
cal prediction of absent MI in the second band at the
edge of the Brillouin zone.

To check these results we performed numerical
simulations using a nonlinear beam propagation
method (BPM). For this we used the parameters of
our waveguide array and a saturable defocusing non-
linearity of the form �n=�nnlI / �I+Id� with �nnl
=−0.000 55 and r=I /Id=3, where Id is the dark irra-
diance and I is the light intensity. The parameters for
the nonlinearity used here are typical for our
LiNbO3:Ti:Fe sample.30 Figure 4 shows typical nu-
merical results in which a pure nonlinear FB mode of
the first band at the edge of the Brillouin zone is ex-
cited, together with some random noise. Here one
may recognize a gradual disintegration of the excited
mode and the formation of narrow localized states re-
sembling trains of discrete solitons with a spatial fre-
quency of approximately �=0.125 �m−1, in good
agreement with the experimental result. Here the
width of a single maximum in the MI pattern coin-
cides fairly well with the typical width of a single
(staggered) soliton in a similar sample used in Ref.
28. On the other hand, if we launch the correspond-
ing FB modes at the band edge of the second band,
this mode propagates stably and MI is absent. For
different nonlinearities �nnl and intensity ratios r,
small variations in the observed spatial frequency
are obtained for the first band as shown in Fig. 5, and
a complete suppression of MI for very large values of
r is also obtained.

Fig. 3. Light intensity distribution I at the rear facet of
the array within the first and second bands as a function of

illumination time t.
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In conclusion, discrete MI of a staggered plane-
wave solution within the first two bands of a perma-
nent 1D waveguide array with self-defocusing non-
linearity is investigated both experimentally and
numerically. In the first band, strong localization of
intensity can be regarded as proof for the occurrence
of MI at the edges of the first Brillouin zone, i.e., in
the regime of anomalous diffraction. Finally, it is
demonstrated that under the same nonlinear condi-
tions MI does not develop in the second band where
dispersion is normal.
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