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lithium niobate crystal, and the optical nonlinearity arises from the bulk 
photovoltaic effect. 
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__________________________________________________________________________ 

1.  Introduction 

The past few years have witnessed a strong interest in periodic optical systems, such as 
waveguide arrays, photonic lattices, and photonic crystals. Such systems exhibit many 
attractive features for which no counterpart exists in homogeneous media, including 
forbidden gaps in their transmission spectra, Bragg diffraction, and the exciting possibility of 
controlling diffraction (for an updated review see Ref. [1]). Of particular interest are the 
nonlinear periodic systems, which support self-localized structures called lattice solitons, also 
known as “discrete solitons” [2,3]. As expected from such periodic systems, many of the 
soliton phenomena found in them cannot exist in homogeneous nonlinear media. That 
includes, for example, spatial gap solitons [4-7], dipole-like (“twisted”) solitons [8,9], higher-
band solitons [10,11] and breathers [12], multi-band solitons [13,14], soliton trains [15], to 
name a few. The phenomena of lattice solitons (solitons in periodic structures) is in fact 
universal, manifesting itself in a variety of systems in nature, from biological molecules 
[16,17], to charge density waves [18], spin waves [19], arrays of Josephson junctions [20,21], 
and very recently in Bose-Einstein condensates [22,23]. 
 A characteristic benchmark experiment in such nonlinear periodic systems involves 
exciting a single channel by a narrow wavepacket (beam of light), watch the wavepacket 
broaden at low power, as it experiences linear lattice diffraction, and then observing it narrow 
down and self-trap at sufficiently high power that activates the proper nonlinearity supporting 
lattice solitons [3]. Such experiments have been carried out with wavepackets launched at the 
base of the 1st Brilluoin zone [3], where normal diffraction is balanced by self-focusing, and 
later on at the edge of the 1st Brilluoin zone where anomalous diffraction is counteracted by 
self-defocusing, giving rise to spatial gap solitons [6,7]. Subsequent experiments have 
demonstrated gap solitons arising from the second band [23,24]. Thus far, however, spatial 
optical gap solitons have been demonstrated in only two physical systems: photorefractives 
[6,7,25] displaying the screening nonlinearity [26] in which waveguides are optically induced 
[27], and fabricated GaAs waveguides possessing the optical Kerr nonlinearity [24,28]. 
 Here, we demonstrate, experimentally and theoretically, spatial gap solitons in one-
dimensional (1D) waveguide arrays exhibiting a saturable self-defocusing nonlinearity. The 
waveguide arrays are fabricated by titanium in-diffusion in a copper-doped lithium niobate 
(LiNbO3) crystal, and the optical nonlinearity arises from the bulk photovoltaic effect. The 
maximum nonlinear index change induced by the photovoltaic nonlinearity is typically very 
high (~0.003 [29]), and the index contrast of the fabricated waveguide array can be adjusted 
over a wide range. Our experiments, therefore, offer a new physical system supporting lattice 
(gap) solitons, offering a strong saturable nonlinearity along with the robustness of the 
fabricated structures. 
 The physical nonlinearity that may cause soliton formation in inorganic photorefractive 
media includes two different charge transport mechanisms: the drift mechanism in an 
externally applied electric field [30,31], and the bulk photovoltaic (photogalvanic) effect that 
leads to an internal electric field [32]. In bulk photorefractives, solitons supported by either 
one of these mechanisms have been observed since 1993 [33] and 1995 [34,35], respectively. 
Since then, such screening solitons and photovoltaic solitons have been demonstrated in many 
photorefractive materials. More recently, following the suggestion of the optical induction 
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technique [27], the photorefractive screening nonlinearity has become a major player in 
lattice soliton experiments [6,7,9,11,25,36-42]. However, thus far the ability to employ the 
photovoltaic nonlinearity for lattice soliton experiments was left behind, even though LiNbO3 
crystals exhibiting such nonlinearity are a fairly mature technology. Namely, LiNbO3 crystals 
doped with certain metal ions (e.g., copper or iron) exhibit strong photovoltaic effects, which 
lead to a nonlinear index change of a saturable self-defocusing nature. At the same time, 
single mode waveguide arrays in LiNbO3 can be fabricated through the extensively used 
titanium in-diffusion method. Nonetheless, soliton lattice experiments in photovoltaic 
waveguide arrays have thus far not been reported. With this idea in mind, a recent theoretical 
paper [43] has shown that discrete solitons can exist in such waveguide arrays with a 
saturable self-defocusing nonlinearity. Here we present the experimental observation of 
spatial gap solitons in photovoltaic 1D waveguide arrays in LiNbO3, possessing optical power 
as low as several microwatts. 

2.  Experimental methods 

The waveguide arrays are prepared in two steps, using x-cut LiNbO3 wafers of congruently 
melting composition supplied by Crystal Technology Inc. In the first step, the substrates with 
dimensions of 1 × (10−25) × 7.8 mm3 along the crystallographic x, y, z axes are doped with 
copper ions to increase the photorefractive effect. The ferroelectric c-axis points along the z-
direction. A thin copper layer of 20 nm thickness is vacuum-deposited on top of the substrate 
and in-diffused for 2 hours at 1000 °C in a wet argon atmosphere. For a total diffusion time of 
4 hours (this time includes the additional titanium in-diffusion of another 2 hours, see 
description below), a nearly constant copper concentration of 5 × 1024 m−3 is obtained at the 
surface region. Alternatively, to avoid the increase in surface roughness caused by copper in-
diffusion, copper may be also in-diffused from the back side of the crystal. For that, a 70 nm-
thick layer of copper is in-diffused for 24 hours. In this case the concentration beneath the 
surface is again 5 × 1024 m−3. 
 In the second step, a 10 nm-thin titanium layer is deposited on the top-side by sputtering, 
and is structured using standard lithographic techniques. In this way, we fabricate a grating of 
period Λ = 8.4 μm, consisting of 4 µm-wide titanium stripes orientated parallel to the y-axis 
of the substrate and separated by 4.4 µm. Subsequently the stripes are in-diffused for 2 hours 
at 1000 °C in air. The titanium increases the refractive index of the LiNbO3 substrate and 
gives rise to waveguiding in its vicinity. Each separate channel forms a single-mode 
waveguide for TE polarized light of wavelength 514.5 nm. Each such channel is evanescently 
coupled to its nearest neighbours. The corresponding coupling constant is given by the 
overlap integral of the modes with the index profile and has been calculated to be ≈1 mm−1. 

 
Fig. 1.  Refractive index profiles n(z) of a LiNbO3 waveguide array at two different depths of the in-
diffused structures: at the depth of maximum field amplitude of the modes (dash-dotted line) and at a 
depth where the amplitude has dropped by a factor 1/e (solid line). The substrate refractive index is 
2.242 (dotted line at the bottom). 
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We calculate the diffusion profile by solving Fick’s law for a finite source in two dimensions. 
As a result of the in-diffusion from the substrate surface, the corresponding periodic refractive 
index profile is a function of depth with the strongest modulation at the surface for x = 0. 
Figure 1 shows the calculated periodic index potential )()( Λ+= znzn  at the depth below the 
surface where the maximum amplitude of the modes occurs and at the depth where the modal 
amplitude has dropped by a factor 1/e. For the theoretical modelling in the next section, the 
index profiles are fairly well approximated by a cos2 function, which yields the profile 

)/(cos00052.0242.2)( 2 Λ+= zzn π  for a depth close to the one where the intensity of the 
waveguide mode has its “center of gravity”. 

 

Fig. 2.  Experimental set-up: P, polarizer; λ/2, half-wave plate; M1,2,  mirrors; GP, thin glass plate; 
CL, cylindrical lens; L1,2, microscope lenses; WA, waveguide array; CCD, CCD camera. The light 
source is a 514.5 nm wavelength argon ion laser.  

 
Figure 2 shows the experimental set-up. We use the green line (wavelength λ = 514.5 nm) of 
an argon ion laser as our light source. A combination of half-wave plate λ/2 and polarizer P 
allows for precise adjustment of power and polarization of the light. We first install a thin 
tilted glass plate (denoted as GP) into half of the optical beam, so as to retard the phase of one 
half of the beam by π  with respect to the other half, thus generating a dipole-like structure. 
Such a dipole-like beam proves to be better suited for exciting spatial gap solitons arising 
from the edge of the Brillouin zone of the first band, because such solitons possess an 
inherent staggered structure. Then, we adjust the distance between the cylindrical lens CL and 
the input microscope lens L1 (40× magnification), so that the input beam into the waveguide 
array WA attains an elliptic shape of proper dimensions, thus facilitating the excitation of a 
well defined number of input channels. We choose the polarization of the input light to be 
extraordinary with respect to the crystalline axes of the LiNbO3 crystal, thus using its largest 
electrooptic coefficient r33. In all our experiments, we maintain a constant value for the beam 
diameter in the non-periodic direction of ~2.5 μm (FWHM), fitting nicely to the diffusion 
depth of each channel waveguide. On the other hand, in the direction of the grating vector, we 
use various beam diameters in the range from 4 to 100 μm. We vary the propagation angle of 
the input beam by moving the input lens L1 perpendicular to the beam. Alternatively, in some 
cases we use a rotatable thick glass plate located in front of the cylindrical lens. Finally, at the 
end face of the array we use another microscope lens L2 (20× magnification) to image the 
light distribution onto a CCD camera. 

3. Fundamentals 

Scalar paraxial wave propagation in a nonlinear 1D waveguide array is described by  

                      i
dE

dy
+

1

2k

d2E

dz2 + k
n (z )+ Δn

n
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ E = 0  .           (1) 

Here, E is the amplitude of the electric light field, k = 2πn / λ  and n are the wave number and 
refractive index of the light in the substrate, n(z)  is the periodically-modulated refractive 
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index defining the waveguide array, and Δn is the nonlinear refractive index change  
(|Δn| << n). In this equation, y is the propagation direction and z is the transverse coordinate 
(x is the “depth” coordinate and does not play any role here; see also sketch in Fig. 2). We use 
this notation to conform the definition of the crystalline axes of LiNbO3. The photovoltaic 
nonlinearity giving rise to Δn is of saturable form [32,34,35] 

                                       Δn = −
1

2
n3 r Epv

I

I + Id

 ,          (2) 

with r being the electrooptic coefficient, Epv the (light-induced) photovoltaic field, I the light 
intensity, and Id = G/s being the dark irradiance, with a dark generation rate G and a photo-
ionization cross-section s. The specific parameters for extraordinarily polarized light in 
LiNbO3 are n = 2.242 and r = r33 = 30 pm/V. Photovoltaic fields in copper-doped LiNbO3 
have been found to reach values of about Epv = 7 kV/mm for copper concentrations of cCu = 
50×1024 m−3 [44], resulting in a maximum nonlinear refractive index change of Δn ≈ 10−3 . 
This value may be considerably lower for smaller total copper concentration and samples that 
have been reduced by annealing treatment, i.e. that have a smaller concentration of Cu2+.  
 We investigate first the band structure of the periodic waveguide array. To do that, we 
solve the linear version of Eq. (1) (with Δn = 0, corresponding to a vanishing low intensity), 
seeking solutions of the form E(y, z ) = A(z) exp (iβ y)  with mode amplitude A and 
propagation constant β.   Then, following the translation symmetry n(z) = n(z + Λ) , we apply 
the Floquet-Bloch theorem and seek solutions of the form A(z) = U(z) exp(iKz z) , where Kz 
is the transverse wave number and U(z) = U(z+ Λ)  is a periodic function. This leads to 

UU
n

zn
kU

k

K

dz

dU

k

Ki

dz

Ud

k
zz β=+−+ )(

22

1 2

2

2

 .     (3) 

This equation can be solved numerically for the eigenvalue β as a function of the transverse 
Bloch wave number [ ]ΛΛ−∈ /,/ ππzK  giving the diffraction/dispersion relation (band 

structure) of the periodic medium, where allowed values of the propagation constant β are 
separated by band-gaps. After solving for the linear Bloch modes of the system and obtaining 
its transmission spectrum, we investigate nonlinear propagation and the formation of 1D 
lattice solitons by solving Eq. (3) with (n(z) + Δn) replacing n(z).   

4. Results and discussion 

We first carry out the “benchmark experiment” described in Section 1, by launching a low 
intensity light beam, of 4 μm (FWHM) horizontal width, into a single waveguide channel at 
normal incidence ( Kz = 0 ). A photograph of the output intensity is shown at the top of Fig. 3. 
Clearly, the output intensity distribution is symmetric about the excited channel, covering 35 
channels, and possesses the characteristic twin lobes on such an experiment [3]. The input 
power in this experiment is chosen to be low and the output photograph is taken immediately 
after switching on the input light, so as to avoid any nonlinear effects that develop in this 
material rather slowly. For comparison, we also simulate the beam propagation in the 
waveguide array using a 4th-order FFT beam propagation method (BPM) [45]. The calculated 
propagation results are shown at the bottom of Fig. 3, and they display a good agreement with 
the experimental results. 
 Staying within the linear case, we calculate the transmission spectrum of the 1D array 
and find the expected band structure shown in Fig. 4. To apply the 1D theoretical model to 
our 2D channel waveguide array, we use the value of the periodic index change at the proper 
“depth” coordinate x discussed in section 2 (see also Fig. 1).  
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Fig. 3. Experimental (a) and theoretical (b,c) results showing discrete diffraction of light in a LiNbO3 

waveguide array, when a single input channel is excited. The upper part in (a) shows the intensity 
distribution at the output of the waveguide array, as photographed with a CCD camera. The two 
lower parts (b) and (c) show the simulated propagation of a beam in a waveguide array under the 
same parameters, at the “depth” of the maximum intensity of each individual mode.  

 
Fig. 4.  Band-gap diagram of the waveguide array, relating the propagation constant β to the Bloch 
wave number Kz as described in section 2. The value “0” corresponds to a plane wave propagating in 
the substrate. The shaded regions represent the gaps where light propagation is forbidden. The black 
dot at the edge of the first band indicates the propagation constant of the gap soliton (shown in Fig. 
7). Increasing the optical intensity creates a negative defect in the periodic structure, thereby 
localizing the corresponding Bloch wave by pushing its propagation constant β down into the gap, 
thus converting it from an extended Bloch wave into a self-localized state: a gap soliton. 

(C) 2005 OSA 30 May 2005 / Vol. 13,  No. 11 / OPTICS EXPRESS  4320
#6929 - $15.00 US Received 22 March 2005; revised 18 May 2005; accepted 24 May 2005



  
Fig. 5.  Probing diffraction in the periodic waveguide array by varying the angle of incidence of a 
four-channel input beam, from Kz = 0 (solid line), to nearly diffraction-free propagation at 

Λ±≈ 2/πzK  (dotted and dashed lines).  

Then, we change the angle of incidence of the input light beam, scanning the launch angle 
over the first Brilluoin zone, from Kz = 0  to Kz ≈ π / Λ . Subsequently, diffraction varies 
from being normal, to almost no diffraction, and then to being anomalous [46,47]. To 
experimentally demonstrate almost diffraction-free propagation at Kz ≈ π / 2Λ , we launch an 
input beam with a width (FWHM) of 30 μm, exciting roughly four channels of the array. As 
shown by the intensity profiles in Fig. 5, which are taken from the output face of the array, for 
a normal-incidence input beam with Kz = 0 (solid line), the beam broadens considerably into 
roughly 20 channels. When the incidence angle is at Λ±≈ 2/πzK  (dashed and dotted lines, 
respectively), the output beam is almost diffraction-free occupying roughly four channels.  
 Then, we move on to the anomalous diffraction region, launching the input beam at the 
Bragg angle ( Kz ≈ π / Λ ). This is also where we can form first-band bright solitons in such 
nonlinear medium, because the photovoltaic nonlinearity in LiNbO3 is of the self-defocusing 
type. Such solitons, arising from the Bloch wave at the edge of the first Brilluoin zone, have a 
staggered phase structure, and their propagation constant lies within the first gap (between the 
first and second transmission bands). Thus, such solitons are often called “spatial gap 
solitons” or “staggered solitons” [4-7]. The solitons form when the optical intensity is 
sufficiently high so that the propagating light beam induces (through the self-defocusing 
nonlinearity) a negative defect in the periodic index structure. When the beam has a structure 
close enough to the structure of the bound state of the induced defect, the optical beam self-
traps in its own induced defect, thereby forming a spatial gap soliton.  
 Experimentally, to facilitate efficient excitation of a Bloch mode propagating close to the 
edge of the Brillouin zone ( Kz = π / Λ ), we divide the input light beam into two parts using 
the tilted thin glass plate (see Fig. 2) that covers half of the beam, thus creating a dipole with 
a relative phase of π. This beam is then carefully adjusted to be launched, at normal 
incidence, into two neighboring waveguides, with a total input power of ≈16 μW. The idea 
behind this method is to generate an input beam that has a larger overlap with the amplitude 
profile of a gap soliton arising from the edge of the Brillouin zone of the first band. Such 
solitons have the “phase signature” of the Bloch mode associated with the same transverse 
momentum [6]. Our excitation method facilitates a larger overlap with the gap soliton 
Kz = π / Λ  wavefunction. At the same time, our method avoids difficulties associated with 
setting two-beam interference to generate nn appropriate input beam, which then has to be 
matched carefully to the lattice. The response time of the photovoltaic nonlinearity in our 
sample is rather long (≈1 hour) [48], thus we monitor the intensity distribution of the beam 
exiting the array as it evolves in time, eventually forming a spatial gap soliton. Consequently, 
we monitor the linear propagation of the input beam through the waveguide by monitoring the 
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Fig. 6.  Formation of a gap soliton in a 1D LiNbO3 waveguide array. The figure shows a line scan of 
the light intensity distribution measured by a CCD at the output facet of the array, where the dotted, 
dashed and solid lines represent the intensity profile at times t ≈ 0, t = 45 min, and t = 160 min, 
respectively. 
 

intensity distribution at the sample’s output face immediately after switching on the light. 
This output intensity distribution is shown for linear propagation at Kz = π / Λ  in Fig. 6 
(dotted line). After several minutes of illumination, the pattern starts to narrow (dashed line) 
by the action of the self-defocusing photovoltaic nonlinearity. Finally, the output intensity 
distribution reaches steady state (solid line) which does not change its intensity profile even 
after several hours.  This  structure  is  a  spatial  gap  soliton. We compare these experimental  

     

 
Fig. 7.  Calculated wavefunction and propagation dynamic of a spatial gap soliton in our setting. Left 
and middle panels: amplitude and intensity of a gap soliton (solid line) plotted on the background of 
the waveguide structure with the light-induced (negative) defect the soliton creates (dotted lines). 
Right panel: simulated stable and stationary propagation of the gap soliton in the waveguide array. 
The intensity profile of the soliton shown propagating in the right panel corresponds to the intensity 
of the soliton shown on the left panel.  
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Fig. 8.  Numerical results for the nonlinear propagation of a Gaussian beam with a π phase jump at 
its center (a dipole): a), b), the beam is launched normal to the waveguide array, and c), d), the same  
input beam is launched with a tilt of 2 mrad into the array. In both cases the input power is 16 μW 
and the input beam covers about half a lattice constant (FWHM of the Gaussian beam of 4.2 μm). 

 
results with the theory, and find in Fig. 7 that the calculated amplitude and intensity (left and 
middle diagrams, solid lines) and simulated propagation (right diagram) of such a gap soliton 
in a sample with 50 channel waveguides, under the same parameters as used in the 
experiment, occupies roughly 5 channels, and exhibits stable stationary propagation in the 
waveguide array. The experimental results are in good agreement with the simulation. 
 To simulate our experiment, we propagate a Gaussian beam (x exp(−x2) with a π phase 
jump at its center (a dipole). The beam's FWHM is half a lattice constant (4.2 μm), it is 
centered between two waveguides, and its input power is 16 μW. When the beam is launched 
exactly normal to the waveguide array, two staggered solitons are created propagating in 
opposite directions. As the two solitons propagate, their transverse velocities decrease (see 
Figs. 8(a), (b)). However, when the beam is launched with some minor tilt (in our simulation: 
2 mrad which is 1/6 of the angle to the edge of the first Brillouin zone), the power is divided 
unevenly between the two lobes of the beam. As a consequence, only one staggered soliton is 
created from the intense lobe, while the second lobe of the beam, being underpowered, 
radiates slowly its energy and disappears (see Figs. 8(c), (d)). In this process, approximately a 
quarter of the beam's initial power was radiated and the surviving soliton's power is 
approximately 12 μW. In our experiments, we generally observe only a single gap soliton 
(similar to Fig. 8(d)), and not the soliton pair. Apart from a very small asymmetry in the 
incoupling geometry (small tilt angle, slightly unequal intensity in the two lobes), which 
hardly can be avoided, the reason is, most likely, higher order terms in the photovoltaic 
nonlinearity that break the symmetry [49], having an effect similar to that of the small tilt 
angle. Most probably, in order to experimentally observe the soliton pair evolving from a 
normal-incidence dipole-type beam, one would have to have a highly symmetric nonlinearity 
for which )()( znzn −Δ=Δ .  
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Summary 

We have investigated linear and nonlinear propagation of light in a 1D waveguide array 
possessing a saturable self-defocusing nonlinearity arising from the bulk photovoltaic effect 
in LiNbO3. For low input power, discrete diffraction is observed, whereas for higher input 
powers, the build-up of a negative nonlinear index change allows for the formation of bright 
gap solitons that have a propagation constant within the gap of the linear dispersion spectrum. 
Experimentally, such a “staggered” bright gap soliton is observed when two wave packets 
with a relative phase difference of π are used to excite, at normal incidence, two adjacent 
waveguides at the input face. The diffraction properties of our sample are modelled using 
Floquet-Bloch waves and calculating the corresponding band-gap structure. These numerical 
calculations confirm our experimental results and show a stable propagation of gap solitons in 
the array. This is to our knowledge the first observation of lattice solitons supported by the 
photovoltaic nonlinearity. 
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