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Abstract. The influence of long-range interactions on the stability of stationary solutions of triangular
lattices described by the continuum-discrete nonlinear Schrödinger equation is analyzed. By virtue of the
linear stability analysis and a variational approach we demonstrate that both soliton array and continuous-
wave solutions are modulationally unstable. Analytical expressions for instability thresholds and growth
rate spectra are presented and compared with the corresponding results in the approximation of a nearest
neighbor interaction.

PACS. 42.65.Tg Optical solitons; nonlinear guided waves – 42.81.Dp Propagation, scattering,
and losses; solitons

1 Introduction

Modulational instability (MI) represents one of the most
basic effects associated with wave propagation in non-
linear media. It consists of the instability of nonlinear
plane waves against weak long-scale modulations with fre-
quencies (wave numbers) lower than some critical value.
This instability can be regarded as a predecessor for the
formation of temporal, spatial, or spatio-temporal pat-
terns. MI, which exist due to an interplay between disper-
sive/diffraction effects and nonlinearity, is observed and
thoroughly studied in various physical systems, such as
plasmas [1], fluids [2], nonlinear optics [3–9], and long
Josephson junctions [10]. We direct the readers inter-
ested in this topic to a comprehensive review paper by
Abdullaev et al. [11].

Continuous-discrete systems, such as DNA molecule
chains, arrays of coupled Josephson junctions [12], and,
especially, nonlinear fiber or waveguide arrays [6–8], have
attracted a lot of attention recently. Here, contrary to
solely discrete systems, which can be modelled within
the framework of the discrete nonlinear Schrödinger equa-
tion (DNLS) [13,14], one has to incorporate the effect of
dispersion along the lattice elements. These multidimen-
sional systems could be fairly described by virtue of the
continuous-discrete nonlinear Schrödinger (CDNLS) equa-
tion, which represents a system of linearly coupled nonlin-
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ear partial differential equations. If the coupling between
the elements is weak enough one can treat this prob-
lem within the nearest-neighbor approximation (NNI),
see [6,7,12,13], for example. Otherwise, the influence of
more lattice elements (sometimes even all of them) must
be included leading to a more complicated model with
long-range interactions [8,15–17]. With this model one
might, for example, depict a vibron energy transport in
biopolymers with dipole-dipole interactions [18] and non-
linear localized modes in photonic crystal waveguides [19].

Precisely the rapid progress in fabrication of photonic
band-gap crystals [20–22] strengthened the interest in non-
square geometries. It was realized that in such crystals,
as well as in various chemical systems [23], both honey-
comb (hexagonal) and triangular (TA) lattices are perti-
nent substrate structures. These non-square lattices are
investigated in the context of their self trapping dynam-
ics [24], the existence and stability of localized states [25],
vortex-vacancy interactions in two-dimensional easy-plane
magnets [26], granular matter [27], etc.

The aim of this article is to explore MI of both con-
tinuous wave (CW) and soliton array (SA) solutions of a
TA lattice within the CDNLS dynamical model with long-
range interactions. Up to date, within such systems, MI
was studied mainly for the case of the simplest square (SQ)
lattice. The paper is organized as follows: we define the
basic evolution equation and give the CW and the SA so-
lutions of the model in Section 2. In Section 3 we represent
a linear stability analysis based on an energetic principle
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and a variational approach, which were originally devel-
oped for the continuum NLS model [28,29] and recently
successfully extended to various continuous-discrete sys-
tems with square geometry. Here the explicit analytical ex-
pressions for the instability thresholds and the growth rate
spectra are given and compared with the analogous results
from SQ lattices. The concluding remarks are placed in
Section 4.

2 Model

The dynamics of a TA lattice with nonlinearly and non-
locally interacting elements in the anomalous dispersion
regime could be adequately described with the following
CDNLS model equation

i
∂ψ�r

∂t
+
∂2ψ�r

∂z2
+ 2ψ�r|ψ�r|2 +

∑

�r′ (�r′ �=�r)

J|�r′−�r|(ψ�r′ − ψ�r) = 0,

(1)
where �r = (m,n, 0) is the discrete lattice vector in a m−n
plane (m = 0,±1,±2, ...,M ; n = 0,±1,±2, ..., N), which
is presented in Figure 1. The spatial continuous coordi-
nate along the lattice elements is z while ψ�r = ψm,n is
the wave function of the (m,n)th lattice element. The
nonlocal interaction term J|�r′−�r| describes a long-range
isotropic coupling between lattice elements and depends
on the distance between interacting elements. This inter-
action model is quite general and enables a mathematical
modelling of a variety of discrete two-dimensional disper-
sive physical systems with long-range interactions. The in-
teraction model for a one-dimensional DNLS lattice with
a power law dependence on the distance between interact-
ing elements was originally proposed in [15]. In our case,
for the CDNLS model equation (1) with an equilateral
TA lattice whose inter-element distance is equal to 1, the
power law dependence can be written in the form

J|�r′−�r| =
1

|�r′ − �r|p . (2)

This interaction model may conveniently depict a wide
class of different discrete dispersive physical systems with
long-range isotropic interactions like propagation of op-
tical pulses in nonlinear fiber arrays, excitation transfer
in quasi two-dimensional molecule crystals (p = 3), and
DNA molecule chains with a long-range Coulomb interac-
tion (p = 1).

Our model equation has a Hamiltonian structure and
can be written as i∂ψ�r/∂t = δH/δψ∗

�r , where H is the
Hamiltonian defined by

H =
∑

�r

∫ ∞

−∞

( ∑

�r′(�r′ �=�r)

J�r′−�r(ψ�r′ − ψ�r)ψ∗
�r

+ | (ψ�r)z |2 − |ψ�r|4
)
dz. (3)

Fig. 1. A coordinate system used for the triangular lattice.

In the above expression for the first conserved quantity of
the system the index z denotes the partial derivative with
respect to the variable z. Another conserved quantity of
equation (1) is the power P =

∑
�r

∫ ∞
−∞ |ψ�r|2dz.

For the TA lattice with periodic boundary conditions
imposed on the discrete dimensions �r one may consider
a set of lattice independent stationary solutions of equa-
tion (1) in the form ψ�r = f(z) eiλ2t, where λ is a real
parameter. We shall restrict our stability study to two
particularly simple and most frequently studied station-
ary solutions. The first one is the uniform CW solution
fCW = λ/

√
2, while the second one is the SA solution,

given by fSA = λ/cosh(λz). In both cases the parameter
λ is related to the amplitude of the wave function.

3 Stability analysis

Because MI of the uniform multidimensional CW solution
is a forerunner of soliton formation and such optical soli-
ton lattices have a great potential (for example in the field
of the self-adjustable waveguides [30]) the investigation of
the stability of these stationary solutions is an important
task. In order to check their stability properties we have
added small, in-phase, square integrable perturbations to
the system

ψ�r(x, t) = [f(z) + δf�r(z, t)]eiλ2t, |δf�r| � |f |. (4)

Substituting equation (4) into equation (1) and lin-
earizing with respect to the small perturbations δf�r,
we get

i
∂δf�r

∂t
+
∂2δf�r

∂z2
− λ2δf�r + 2|f |2(2δf�r + δf∗

�r )

+
∑

�r′ (�r′ �=�r)

J�r′−�r(δf�r′ − δf�r) = 0. (5)

In order to find sufficient conditions for the linear insta-
bility we are going to assume perturbations with a simple
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harmonic dependence on the discrete dimensions �r in a
form [6,8] δf�r(z, t) = (a + ib) cos(kmm) cos(knn), where
km = 2π/(2M + 1) and kn = 2π/(2N + 1) are discrete
wave numbers. It is rather easy to obtain the following
eigenvalue problem from the last two equations

∂b(z, t)
∂t

= −L̂+a(z, t),

∂a(z, t)
∂t

= L̂−b(z, t), (6)

where L̂± are the linear second-order differential operators
defined by

L̂+ = − ∂2

∂z2
+ λ2 − 6f2(z) +Σ(M,N),

L̂− = − ∂2

∂z2
+ λ2 − 2f2(z) +Σ(M,N). (7)

The complete discrete properties of the system de-
scribed by the operators L̂± are taken into account
through the interaction term Σ(M,N), which is given by
the following expression

Σ(M,N) = 4
[ M∑

m=1

Jm,0sin2(kmm/2)

+
N∑

n=1

J0,nsin2(knn/2)
]

− 2
M∑

m=1

Jm,−m[cos(kmm) cos(knm) − 1] − 2

×
M∑

m=1

N∑

n=1

Jm,n[cos(kmm) cos(knn) − 1], (8)

where the whole plane is reduced to the first sextant. This
interaction term is always positive and depends both on
the lattice dimensions and the form of the interaction be-
tween the lattice elements. The first three sums account
for long-range interactions along directions which coin-
cide with the symmetry axes of the TA lattice shown in
Figure 1, while the last term covers the remaining space.

3.1 Stability of the CW solution

In the case fCW = λ/
√

2 the differential operators L̂±
are homogeneous and stability analysis is straightforward.
The Fourier transform (e−iωt+ikz) of equations (6) pro-
vides the following dispersion relation

ω2 =
(
k2 +Σ

) (
k2 − 2λ2 +Σ

)
. (9)

Instability occurs for ω2 < 0, which leads to the following
threshold condition

λ2 >
k2

2
+
Σ(M,N)

2
. (10)

Fig. 2. Instability threshold λc as a function of the size of the
two-dimensional lattice (M, N) in the nearest-neighbor approx-
imation for k =

√
2.

As can be seen from equation (10), the lowest threshold is
for an excitation of small wave-number (long-wavelength)
perturbations corresponding to MI.

In the case of the NNI this instability threshold is
given by

λ2 > λ2
c =

k2

2
+ 2 sin2(km/2)

+ 2 sin2(kn/2) − [cos(km) cos(kn) − 1]. (11)

The dependence of λc on the size of the lattice is shown as
a contour plot in Figure 2 for the case when k =

√
2. The

instability threshold decreases with the enlargement of the
lattice and (in the first sextant) it has minima for the di-
rection which coincides with the axis of symmetry of the
angle which is determined by m and n axes. Comparing
this result with the corresponding one (Eq. (19)) from [8],
where a similar problem but for SQ lattices was investi-
gated, it is easy to realize that the instability threshold
for the CW solution of TA lattices is always higher than
the analogous threshold for SQ lattices. The reason for
this is a purely geometric one: as higher is the number
of the neighbors in an elementary cell (which is 6 in the
TA lattice and 4 in the square one) the stronger is the
resistance to changes in the system. In Figure 3, where we
present ∆λ = λcTA − λcSQ as a function of the number
of the elements of lattices with M = N , one can see that
the difference between the thresholds for these lattices is
biggest when M = 3 and that this difference is practically
constant for larger lattices.

The corresponding result with long-range interac-
tions between the elements of the TA lattice, where
we use the interaction model with a power law depen-
dence of the distance between the interacting elements
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Fig. 3. Value of ∆λ as a function of the size of the lattice with
M = N and for k =

√
2 along the most unstable direction.

Jm,n = (m2 + n2 +mn)−p/2, reads

λ2 >
k2

2
+ 2

[
M∑

m=1

sin2(kmm/2)
mp

+
N∑

n=1

sin2(knn/2)
np

]

−
M∑

m=1

[cos(kmm) cos(knm) − 1]
mp

−
M∑

m=1

N∑

n=1

[cos(kmm) cos(knn) − 1]
(m2 + n2 +mn)

p
2

. (12)

This result reveals that, due to the increased inertia
of the system, the instability threshold for long-range in-
teractions is higher when compared to the corresponding
threshold within the NNI. The instability threshold λc for
long-range interactions along the most unstable direction
in the first sextant as a function of the size of the trian-
gular lattice (with M = N) for k =

√
2 and for a few

different values of the interaction parameter p is given
in Figure 4. The value p = 3 corresponds to the case of
isotropic dipole-dipole interactions discussed in [18] for
the two-dimensional DNLS lattice model. The stabilizing
influence of the long-range interaction is obvious.

3.2 Stability of the SA solutions

Stability analysis of the SA solutions becomes more com-
plicated due to an explicit z dependence of the differential
operators L̂±. However, the fact that the discrete proper-
ties of the system are incorporated into the operators L̂±
only through the term Σ(M,N), enables a direct applica-
tion of mathematical methods developed for the stability
analysis of continuum models. In order to find the insta-
bility threshold and to get detailed spectra of the growth
rate, we have applied a generalized energetic principle [28]
and a variational method [29] to our model. These meth-
ods were originally introduced for stability study of con-
tinuum NLS equation solutions.

Fig. 4. Instability threshold λc along the most unstable direc-
tion in the first sextant as a function of the size of the triangular
lattice with M = N , k =

√
2, and for different values of the

parameter p.

Here it is convenient to replace λz → z and to express
the operators L̂± in the form

L̂+ = λ2(Ŝ+ + µ− 5),

L̂− = λ2(Ŝ− + µ− 1), (13)

where µ is a parameter containing information about the
discreteness of the system, defined by

µ =
Σ

λ2
, (14)

and Ŝ± are Sturm-Liouville-type operators

Ŝ+ = − ∂2

∂z2
+ 6tanh2(z),

Ŝ− = − ∂2

∂z2
+ 2tanh2(z). (15)

The spectra of these operators can be found in [31]. The
smallest eigenvalues σ

(0)
± and corresponding eigenfunc-

tions ψ(0)
± in the discrete part of the spectrum are

σ
(0)
− = 1; ψ

(0)
− = 1/ cosh(z),

σ
(0)
+ = 2; ψ

(0)
+ = 1/ cosh2(z). (16)

The procedure of the energetic principle, which is de-
scribed in detail in [29], demands one to find regions of the
parameter µ where the operators Ŝ± are positive definite
or indefinite. Since the Sturm-Liouville operators Ŝ± are
positive definite and posses only positive eigenvalues it is



M. Stepić et al.: Modulational instability on triangular dynamical lattices 499

straightforward to find that the operator L̂− is positive
definite for µ > 0, while the operator L̂+ is indefinite for
0 < µ < 3 and positive definite for µ > 3. According to
the energetic principle sufficient conditions for instability
are satisfied in the region 0 < µ < 3, where the operator
L̂+ is indefinite. On the other hand, the system is stable
for µ > 3, where the operators L̂± are positive definite.
These results lead to the next instability condition

λ > λc =

√
Σ(M,N)√

3
. (17)

As noticed in [8] this result, for k = 0, differs from the cor-
responding result for the CW solution only in a numerical
factor

√
2/3 ≈ 0.8165. This fact implies that all corre-

sponding explicit results for the instability thresholds for
the SA solutions might be derived from the expressions
given by equations (10–12) for the instability thresholds
of the CW solutions (one has to put k = 0 and multiply by
the factor 0.8165). Moreover, the form of the curve shown
in Figure 2 is the same as in the case of the AS solution.

By virtue of the energy principle it is possible to ob-
tain only a limited part of information, namely, about
the instability threshold. In order to calculate the growth
rate spectral structure of the instability, one may use a
variational approach, originally introduced for the con-
tinuum NLS equation in [29] and first generalized to the
continuum-discrete 1D NLS equation with NNI in [32].
For the normal exponentially growing modes a(t, z) =
a(z) exp (γt) and b(t, z) = b(z) exp (γt) with the growth
rate γ, the eigenvalue equations (6) are transformed, with
the substitution λz → z, into

L̂+a(z) = −Γb(z),
L̂−b(z) = Γa(z), (18)

where Γ = γ/λ2 is the normalized growth rate. These
equations may be derived from the variation of the action
δS = δ

∫ ∞
−∞ L(a, az, b, bz, z)dz, where the Lagrangian L is

given by

L =
1
2

(
a2

z + b2z
)

+
[
µ+ 1

2
− 3

cosh2(z)

]
a2

+
[
−µ+ 1

2
+

1
cosh2(z)

]
b2 + Γab. (19)

The main idea of the variational approach is to define a
set of test functions ã(z) and b̃(z) with some variational
parameters and to calculate the action integral S. Obvi-
ously, with this approach, the obtained results will crit-
ically depend on our choice of the test functions. It was
shown and also numerically confirmed in [8,29,32] that a
good choice for these functions are the eigenfunctions of
the operators L̂± for marginally stable states (Γ = 0)

a(z) = 0 , b(z) =
1

cosh(z)
, µ = 0,

a(z) =
1

cosh2(z)
, b(z) = 0 , µ = 3. (20)

Fig. 5. Normalized growth rate Γ as a function of the size of
the triangular lattice in the nearest-neighbor approximation,
and for λ = 2.

Assuming test functions with two variational parameters
α and β in the form

ã(z) =
α

cosh2(z)
, b̃(z) =

β

cosh(z)
, (21)

we have found the action integral S = 2α2(µ
3 − 1) −

µβ2 + π
2Γαβ. The following expression for the growth rate

structure

Γ (µ) =
4
√

2
π
√

3

√
µ(3 − µ), (22)

is obtained from the conditions ∂S/∂α = ∂S/∂β = 0.
The instability threshold λc corresponds to the

marginally stable mode Γ = 0 in the dispersion relation
(22). The expression for the threshold calculated from
equation (22) coincides, as expected, with the expres-
sion (17) obtained by applying the energetic principle.

Replacing the particular expressions for µ into
equation (22) for lattices with different types of interac-
tions (nearest-neighbor or long-range) we can readily ob-
tain explicit formulae for the corresponding growth rate
structure. So, for the TA lattice with the NNI, we get

Γ =
4
√

2
λ2π

√
3

(
4

[
sin2(km/2) + sin2(kn/2)

]

−2 [cos(km) cos(kn) − 1]
)1/2

×
(

3λ2 − {4[
sin2(km/2)

+ sin2(kn/2)
] − 2 [cos(km) cos(kn) − 1]}

)1/2

. (23)

We present the dependence of Γ on the size of the lattice
as a contour plot in Figure 5 for λ = 2.

In the case of long-range interactions, where the
interaction model with a power law dependence on
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the distance between the interacting elements Jm,n =
(m2 + n2 +mn)−p/2 is applied, one can obtain

Γ =
4
√

2
λ2π

√
3

{
4

[
M∑

m=1

sin2(kmm/2)
mp

+
N∑

n=1

sin2 (knn/2)
np

]

−2
M∑

m=1

[cos(kmm) cos(knm) − 1]
mp

−2
M∑

m=1

N∑

n=1

[cos(kmm) cos(knn) − 1]

(m2 + n2 +mn)
p
2

}1/2

×
{

3λ2 − 4

[
M∑

m=1

sin2(km/m2)
mp

+
N∑

n=1

sin2(knn/2)
np

]

+2
M∑

m=1

[cos(kmm) cos(knm) − 1]
mp

+2
M∑

m=1

N∑

n=1

[cos(kmm) cos(knn) − 1]

(m2 + n2 +mn)
p
2

}1/2

. (24)

We monitor, for the sake of simplicity, the behavior of
this growth rate only along the most unstable direction of
the lattice with M = N , i.e., along the diagonal of the first
sextant. In Figure 6, where λ = 2, one might see how the
normalized growth rate Γ depends on the size of the lat-
tice for various values of the interaction parameter p. The
result in the NNI approximation practically corresponds
to the result of the power law interaction for p = 5. More-
over, it is clear that the influence of long-range interactions
is more pronounced for larger lattices. Figure 7 depicts the
dependence of Γ on the soliton parameter λ for a lattice
with M = N = 4 and for different values of the parame-
ter p. It is easy to notice how an increase of the radius of
the interaction influences the growth of the threshold am-
plitude for the onset of the instability. For higher values of
the parameter λ where, independently of the values of the
parameter p, the condition for the onset of the instability
is fulfilled, one might notice that the chosen exponential
perturbation spreads the fastest for p = 1.

4 Conclusion

To conclude, an attempt to examine the problem of mod-
ulational instability of stationary solutions on a triangular
lattice is presented. In media with cubic nonlinearity and
dispersion the continuous-discrete nonlinear Schrödinger
(CDNLS) equation can be considered as an adequate pro-
totype equation. We paid attention to continuous-discrete
nonlinear systems with long-range interactions between
the elements, such as photonic crystals, nonlinear fiber
arrays, and DNA molecule chains. Usage of a standard
linear stability analysis revealed that the first, contin-
uous wave, stationary solution is unstable with respect
to small in-phase perturbations. The linear stability of
the second, soliton array, stationary solution is solved by
virtue of an energetic principle and a variational method,

Fig. 6. Normalized growth rate Γ as a function of the size
of the triangular lattice for different values of the parameter p
and λ = 2.

Fig. 7. Normalized growth rate Γ as a function of the soliton
parameter λ for lattice with M = N = 4 and for various values
of the parameter p.

which were originally developed for the continuum nonlin-
ear Schrödinger equation [28,29]. We have calculated ex-
plicit expressions for the instability thresholds and growth
rate spectra valid for the CDNLS on a triangular lattice
with long-range isotropic coupling between the elements of
the lattice. Furthermore, we obtained explicit formulae for
long-range isotropic interactions with a power law depen-
dence on the distance between the interacting elements.
Our results are compared with the corresponding results
from square lattices. The stationary solutions of the tri-
angular lattice have higher instability thresholds than for
the square lattice. The stabilizing role of the long-range
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interaction on the stability of both stationary solutions is
confirmed and it was shown that, when the conditions for
the onset of the instability are fulfilled, the growth rate
of the perturbation is proportional to the radius of the
long-range interaction. Our results may be interesting not
only for the area of nonlinear optics but also in biology,
chemistry, and condensed matter physics [33].
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026604 (2002)
33. J.L. Marin, J.C. Eilbeck, F.M. Russel, Phys. Lett. A

248, 225 (1998); J.L. Marin, J.C. Eilbeck, F.M. Russel in
Nonlinear Science at the Dawn of the 21th Century, edited
by P.L. Christiansen, M.P. Soerensen (Springer, Berlin,
2000), p. 293


