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One-dimensional bright discrete solitons in media with saturable nonlinearity
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A problem of pulse propagation in a homogeneous nonlinear waveguide array with saturable nonlinearity is
studied. The corresponding model equation is the discretized Vinetskii-Kukhtarev equation with neglected
influence of diffusion of charge carriers. For periodic boundary conditions, exact homogeneous and oscillating
stationary solutions are found. A wide instability region of the homogeneous, array-independent solution is
identified. An approximate analytical solution for the bright one-dimensional discrete soliton where the energy
is concentrated mainly in a few waveguides is obtained. The soliton stability is investigated both analytically
and numerically and a cascade nature of the saturation mechanism is revealed.
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[. INTRODUCTION experiment. The formation time of these solitons can be as
short as milliseconds and below. Moreover, the magnitude of
A soliton is a type of normal mode of a special class ofthe saturable nonlinearity of photorefractive crystals can be
nonlinear, usually infinite-dimensional mechanical systemsasily driven by adjusting the applied external electrical
often described by integrable partial differential equationsfield.
such as Korteweg—de Vries, Klein-Gordon, or the nonlinear There are few different classes of photorefractive solitons,
Schrodinger equation. From a mathematical aspect, solitorfaut of special interest are steady-state screening solitons that
are a special nonlinear paradigm since they are associat&¢ere predicted and observed a few years $8@]. The
with Hamiltonians, i.e., conservative systems of a kindphysical mechanism which lies beyond the generation of
which have action-angle variables, so-called integrable ~ Screening solitons is rather complicated and therefore we di-
completely integrablenonlinear systems. Solitons are stable 'ect the _mtere_sted re_ader to some of_the artlcle_zs in Whlch_ this
with respect to collisions with both linear waves and other’S €xplained in detai[4—6]. We shall just mention that this
solitons. However, there are a lot of dynamical systems ifnechanism includes several processes with a retarded tem-
nature which could be described by virtue of some nonintePOral response. Both charge separation and the consequent
grable partial differential equation. Such systems also haygeneration of a space-charge electric field under the influence

localized, so-called solitary wave solutions that can traveﬁ]c an external beam require a finite time which is propor-

: . : . “tional to the dielectric relaxation time. Due to the charge
;ﬂ?ﬁ L;tsiﬁgfng%g]m‘j;?s;’ 2?]?1 ﬁufrivk;/e'rng?grﬁls c::Iemonor}ransportation over macroscopic distances via diffusion and
nergy. S DEr of g quaavey. ._drift, this mechanism is also anisotropic and nonlocal.
These solitary wave solufuons can exist in b‘?F‘F‘ded media, Bright solitons in saturable bulk media are already well
but often suffer from various kinds of instabilities. In the described[7-11. The biggest differences from solitons in
optical community, it is very common to neglect t.hese d'f'. Kerr media are that photorefractive solitons exhibit a stable
ferences and just to call these solitonlike pulses simply SOI"seIf-trapping behavior in both transverse dimensi@sand

ton'\s/l. Herde_?rfter, We are %omlg to f°”$]V_V :]h('js.ﬁOpt.'Caantat'on'an inelastic character of collisions between them leading to
any different sorts of solitons, which differ in their non- 1o ‘g™ 14 sion of solitor(, 9.

linear physical mechanism, dimensionality, color, or coher- Although many problems in the nonlinear dynamics of
ence, have been both theoretically predicted and experime
tally observed[1]. But, definitely, photorefractive solitons

attract the biggest attention both in the soliton and the optic

communication community. Due to the small optical POWer o rining the optical pulse propagation in arrays of coupled

required for their generatiofmicrowatt leve), it is very easy optical waveguideg13-16, the model of Scheibe aggre-

to obtain them experimentally even with continuous-wave,,ioq117] and others. The major physical parameter in these

lasers and standard optical equipment, and an_almqst fu ystems is the interelement distance. The localized states in

control of the relevant parameters can be obtained in thaiscrete systems arise through the balance between nonlin-
earity and linear coupling effects among the adjacent poten-
tial wells. The effect of discreteness may significantly change

*Email address: milutin.stepic@tu-clausthal.de the stability properties of localized statgk3,18, collapse

I%'patially extended systems involve continuous media, there
re many inherent discrete systems such as Davydov’s model
or transport of energy in biophysical systefi®], models
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dynamics[19-21], and other features as compared to con-is a positive paramete(rss is the electro-optic coefficient,
tinuous systems. Among the nonlinear discrete system&,~V/L, whereV is a constant bias voltage andis the
probably the most interestinfrom a practical point of view  width of the photorefractive crystal along thxedirection).
are those in nonlinear optid45,22. Such discrete optical The crystal is so oriented that its ferroelectdaxis coin-
solitons are found both in arrays of coupled waveguidegides with thex direction. It is also assumed that the incident
[13-14 and fiberg[22]. laser beam is polarized along tbexis (extraordinary refrac-
The nonlinear waveguide array was introduced in solitortive indeX and that the applied electric fiele, has a com-
theory 15 years agfl3]. It is suggested that these arrays ponent only in the same direction.
possess a great potential for various applications such as op- The optical pulse propagation in 1D equidistant nonlinear
tical interconnects, beam deflectors, and modulators as wellaveguide arrays with saturable nonlinearity can be mod-
as nonlinear all-optical switches and amplifiers. The first exeled, within the nearest-neighbor approximation and with ne-
perimental observation of discrete spatial solitons in nonlinglected influence of diffusion of charge carriers, by virtue of
ear waveguide arrays with Kerr nonlinearity was reportedthe following discrete version of the Vinetskii-Kukhtarev
only five years ag$23]. Soon thereafter, waveguides with a equation:
negative diffraction were obtained which enable defocusing
of light and paved the way to the discovery of the discrete IUn
diffraction managed spatial solitorjig4]. Discrete gap soli- X3
tons in modulatedbinary) waveguide arrays were predicted
[25] and discrete solitons in two-dimensionaD) networks
of nonlinear waveguide arrays have been propog].
Also, the influence of long-range interactions on the nonlin-

ear localized modes in 2D photonic crystal waveguides has; . ) . o
been investigatef27]. Optically induced 1D and 2D photo- single waveguidgusually a few microns This equation in
fact represents a system of linearly coupled nonlinear ordi-

nic lattices have been created by virtue of plane-wave inter i tial y hich Cint ble in th
ference, and discrete photorefractive solitons in such systen{?ry Iferential equations which aré not integrable in the

were numerically and experimentally obtained very recently: eneral case. It* possesseg a hidden. Hamiltonian structure
[28). y P y y %Un/ag:(SH/éUn, whereH is the Hamiltonian of the sys-

However, as of yet, there are neither explicit results for™M and the asterisk denotes a complex conjugation. Here

_ 2 1) 12/9R2] : )
the dependence of these localized discrete structures in '3‘2“['3 I”(1+_|U”| )+|Upg - Uy /2” is the first con .
saturable media on the system parameters nor information cif"ved guantity of the system, whllezthe second one is a
their linear stability. The objective of our paper is to inves-Number of quanta(powey P=2,[Uy% In the small-

: D \ ) )
tigate the existence and stability of 1D bright discrete screer@MPplitude limit|Uy|*<1, this equation passes into the well

ing solitons. Our findings could be interesting not only for aknown (1+1) discrete nonlinear Schrodinger equation with
particular application in nonlinear optics but also for differ- K€rr nonlinearity. It means that with Eg2), under proper
ent discrete biophysics and solid-state physics systems witfPnditions, one could also describe various real discrete
the same type of nonlinearity. This paper is organized in thétructures such as a chain of tightened atd@29, the
following manner: the basic evolution equation is defined inModel of dynamics in globular proteins and some molecular
Sec. Il analytical and numerical results concerning homoge€!ystals(12,30, arrays of Josephson junctiof&l], polarons
neous solution are collected in Sec. IlI, corresponding resultd) condensed-matter physi¢82], and pulse propagation in

related to the soliton solution are placed in Sec. IV, while theShort fiber arraygwhere dispersion can be neglegt¢2?2].
conclusions are given in Sec. V. Hereafter, we have restricted our study to a planar homo-

geneous array of waveguides in a photorefractive SBN61
(Sry.61Bag 3Nb,Og) crystal, which possesses excellent opti-
cal properties and large nonlinear electro-optic coefficients
The evolution equation of bright 1D optical spatial soli- [33]. Permanent waveguides in SBN61 can be fabricated by
tons in bulk photorefractive media, based on the Vinetskii-ion implantation33]. Usually SBN61 crystals are both a few
Kukhtarev mode[4] (with the neglected diffusion tenmcan  mm long (z direction) and wide (x directior). The unper-
be written ag6] turbed extraordinary refractive index for SBN61 ig,
5 =2.35, while the relevant electro-optic coefficient rig;
i&+}ﬂ_ﬁL=0 (1) =280 pm/V. This crystal is sensitive to both blue and
ag 298 T1+|Up green light. The arbitrary scaling lengty is set to 8 um.

whereU=1/l4 is a normalized slowly varying envelope of
the electric field of the light wavd, is the intensity of the
beam whilely is the so-called dark irradiance, agiez/kx3

is a dimensionless coordinate along which the beam propa- The stationary solutions are of significant importance be-
gates. Here, is an arbitrary spatial width anki=27n.,/\g  cause they represent some of the available attractors of the
is the wave number with the unperturbed extraordinary resystem. Within a linear theory, it shows up that both the
fractive indexng, and light wavelength,. We uses=x/xgas  exponential perturbations’ growth rate and the threshold
a normalized transverse coordinate g8ml(kxn.)’rssEo/2  amplitude for the onset of instability depend on the wave

_Un
1+]Uy?

1
"'%(Un+l+un—l_zun)_,8 =0, (2

whereU, is the wave function in thath nonlinear element
(n=1,... N) with (Uys1=U,) for the case of periodic
boundary conditionsh=(L-Nd)/Nx, is the normalized dis-

nce between two elements, ahdepresents the width of a

II. MODEL EQUATION

. HOMOGENEOUS SOLUTION
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number (and/or on the nonlinear frequency shif the
stationary solution. There are a lot of reports about the linear
stability of these stationary solutions in discrete
[13,15,18,21,27,29,34—B7continuoug 19,38, as well as in
continuous-discrete systerfi39,40. For any set of the sys-
tem’s parameter® andh there exist 8l possible stationary
solutions such as homogeneous, oscillatory, soliton, and mul-
tisoliton solutions. Here we investigate the existence and sta-
bility of the simplest homogeneous and soliton solution.

We have found the following exact oscillatory wave solu-
tion of Eq. (2):

0s _ B+ 2h72sirf(Kh/2) — v i yesiKnh
Unng =t \/ V- 2h 2Si(Khi2) E

FIG. 1. Example of the time evolution of the electric field across
a waveguide array wittN=41. System’s parameters af=18.2,

whereK is a discrete wave number andis the nonlinear . )
|f h:0.5, WhllET:§/2h .

frequency shift. The amplitude of this solution is real
2h2sir?(Kh/2) <v<B+2h™?sir’(Kh/2) and the corre- _ _ o _ _ N
sponding existence region is of widgh It is also possible to The dispersion relation in Eq5) defines the instability

find an exact, homogeneous solution growth rate spectra for the frequency band in Eg). In
order to confirm our analytical results, we have numerically

e L [BY 12 ive solved Eq.(2) by a sixth-order Runge-Kutta procedure with
Unom= Ao ™= £{ —— | €7, (4 regular checking of the conserved quantitRsnd H. For
the initial conditiong ¢é=0) in the numerical calculations, we
This simple array-independent solution is a special case diave used the perturbed stationary homogeneous solution
the oscillatory one, wher&=0 is taken. If O<v<pg, its  [Eq.(4)] in the form
constant amplitude is real and, opposite to the corresponding
solution in Kerr-like media, this one has a limited existence U.=U {1 n s( n—-N/2- 1)}
) ; n=Uhom € Cos 27 ,
range due to the saturable nature of the nonlinearity. N
In order to investigate the linear stability of the homoge-
neous solution, we follow a standard procedure and intro . : .
duce a small, complex, array-dependent, in-phase perturb rowth ratesl (“’:Q+'F)_ are numepcally estlmated' fro'm
tion around this solutionU,=(Ag+5,)exp(—ivé), where the early stage of_the time evolution of the electric field
5:(&)=[a(&) +ib(&)lexp(2izm/N) and (|5, <Upom=Ag). Sub- €TSS the waveguide array.

stitution into Eq.(2), after linearization with respect to the acggsegevrgeclae L?if:iéh;rgm\?vitivz:ll.ugﬁanmg;t?Zn?jktaﬁglgoEﬁlr?ear
small perturbations and use of Fourier’s transfoarb g y

Cio . , : C frequency shiftv=2 is shown in Fig. 1, illustrating the de-
¢
e, leads to the following dispersion relation: velopment of the modulation instability. The values of the
, 4 fm\[1  (m v system parameters in this woKlexcept in Fig. ¢ are 8
W= sir?| — 2 sir? N 1- 5| (5  =18.2(we choose the blue light from an argon-ion laser with
a wavelength of 488 njnandh=0.5, which correspond to

In the small-amplitude regime, this result coincidefter a  an external applied electrical fiel,=4.5 kV/cm and an
Simp|e adjustment of notations and for wave numhglo) interelement distance of 4/.Lm The numel’ically estimated
with the dispersion relatiofEq. (10)] in Ref. [35], where a  (Circles and analytically calculated valugdashed linesof
general approach to modulational instability of discrete nonthe growth rated” in the central waveguide are plotted over
linear systems with cubic nonlinearity is described. A suffi-the instability region, which is given by E¢6) for (=0 and
cient condition for the homogeneous solution to becomdor arrays withN=5, 15, and 41 waveguides in Fig. 2. The
modulationally unstable i&?<0 which, together with the agreement between the numerical and analytical results is

fact thatN=100 andh=~1, results in the next instability fairly good with only small discrepancies for the array with
frequency band N=5 waveguides in the region of medium valuesvof

This result indicates the presence of exponentially grow-
sir?(ar/N) sir?(m/N) ing modes in the system, giving no predictions about the
h2 <v<p- R 6) subsequent nonlinear evolution stage. It is shown that dis-
crete systems with Kerr nonlinearity, instead of a collapse
In the very narrow frequency bands/=sir?(w/N)/h? atthe  behavior that is observed in the multidimensional continuous
ends of the existence interval, this solution is stable withcase[19], exhibit a quasicollapse behavior leading to the
respect to the given form of the perturbation. Note that information of localized structures in the form of discrete soli-
these regions, instabilities might occur under some othetons[34]. The Kerr nonlinearity is just the small-amplitude
kind of perturbations. This result is valid in the limit limit of the saturable nonlinearity, therefore a similar quasi-
4 sirf(7/N)/ gh?— 0. collapse process and existence of bright 1D discrete screen-

wheree is a small parametéhere we choose=0.001). The
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4'_ I . the central part of the nonlinear waveguide array #er5,
Nes c{g‘;‘poooo"d,‘ B=18.2, and for three different values of the waveguide dis-
sk - & Oo tanceh. The symbols denote the intensity in each waveguide,
. O 0. while lines represent just a guide to the eye. In the dase
g, » O«O N=15 OQ =1.5, the waveguides are well separated and there is almost
T o 000 000000, 00 o no coupling between them resulting in a discrete soliton with
1k Oo Ob. the energy almost completely concentrated in the central
OoogmmOOOOOQOOg wgveguide. Decreasing th_e dista}nce vinI increase the cou-
b T pling, thus small satellites in the first neighbors form and the
0 5 10 15 20 discrete photorefractive soliton starts to spread. By further
v reducing the distance, more and more elements of the array

are excited, thus the localized structure becomes wider. Ob-
FIG. 2. Comparison of the numericétircles and analytical  yjously, in the saturation region, where these solitons become
(dashed lingresults for the growth rate spectfa=Im(w) for the  \yider, it is not justified to neglect the amplitude of the first
nonlinear waveguide arrays witd=>5, 15, and 41 elements. neighbors in comparison to the central element's amplitude.
By solving Eq.(2) for the caser=h2 with the following
ing solitons, where the energy is localized only in between gorrected amplitude ratio&,>A,;>A,— 0 one can get the
few central waveguides of the nonlinear array, are fully ex-next approximate expressions for the pulse amplitudes in the

pected. three central elements of the nonlinear array:
B?h* =2 + ph?\4 + g?h*
IV. SOLITON SOLUTION Ap= % > :
As for Kerr-like media[34], it is possible to find an ap-

proximate expression for such a narrow discrete photorefrac- 2P0 A
tive soliton. Namely, from Eq(2), in the symmetric case A= ph LeA (8)
Un-m=Unem, (M=1,2,..) with |Up|>|Upq|>|Upss| one
can get We applied a Vakhitov-Kolokolo\{38] criterion which

gives the answer about the system’s stability with respect to
small longitudinal perturbations. With an assumption that the
system’s total powerP is shared only between three

U=+ waveguides, one may obtain
1+2h*(B+h2-1)2 ©
U 2ht(v-h2)(B+h2?-p)’
_ n
Unem = ) 1 m (7 According t0[38,27, this localized structure is stable with
2h ,3+ 2TV respect to the small longitudinal perturbations if the po®er

is a monotonically decreasing function for any value of the
for the wave functions in a dominant element and its neighfrequencyr. This is both a necessary and sufficient condition
bors. The result for the neighbors is valid only under thefor the stability in the discrete systef2l]. The analytical
restriction that/U,|2— 0. Such localized states are possibleform for the powerP of discrete screening solitons placed on
neither in the small-amplitude regime nor in the oversaturathe center of the lattice as a function of the nonlinear fre-
tion regime. Figure 3 depicts the intensity distribution alongquency shifty is presented in Fig. (@) (solid ling). As the
power is a monotonically decreasing function of one
might conclude that bright 1D discrete screening solitons are
T h=15 stable with respect to small perturbations. In the small-
amplitude regime, this result confirms a conclusion about the
stability of the corresponding nonlinear mo¢edd, unstag-
gered, and symmetnidrom Ref.[37], where the stability of
strongly localized modes was investigated by virtue of a di-
rect linear analysis. In order to study dynamics of the dis-
crete systems in media with saturable nonlinearity, it is nec-
essary to use numerical simulation because ([2j.is not
integrable in a general case. These numerical results are es-
pecially valuable in the deep saturation regime where our
approximate theoretical solution fails. The numerically cal-
FIG. 3. Intensity patterns of discrete solitons for three differentCulated power is given in Fig.(d) (dotted ling. The agree-
values of the waveguide distanbeThe symbols denote the inten- ment with our analytical results is fairly good, except in the
sity in each waveguide while lines represent a guide to the eye. big amplitude regime. However, despite a small bend near

44 2

34 ;Y moh-06

U, |
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FIG. 4. (a) Power of discrete screening solitéras a function of
nonlinear frequency shift (8=18.2 h=0.5). (b) Amplitude in the FIG. 5. Amplitude of discrete screening solitq=18.2h
central waveguide and its first and second neighbors vs frequency=0.5 vs waveguide numben for (a) »=10 and(b) »=17. The
for the same parameters as(&. numerical results are given by circles while the analytical predic-

tions are given by squares.
the left asymptotgr=h?), the curve is still monotonically
decreasing, thus confirming the soliton stability.
We also explore the behavior of discrete solitons in th
regime of saturation in detail. In Fig(i4), where the depen-

Figure 5 depicts a comparison between analytical and nu-
merical results for the possible stationary states of the dis-
e ; , >
crete screening soliton, which is placed at the center of the

dence of the soliton amplitude on the fr nev for th qarray consisting oN=101 elements. For intermediate fre-
P on the Irequency for the cen uenciegFig. 5a)], narrow discrete solitons are formed. By

tral element and its first and second neighbors is presente wering the soliton amplitude, our numerical simulation

one can notice a gradual transition to the saturation regimeSuggests a widening of the localized structFag. b)]. It

The central element goes first into saturatifar v=4), s interesting to mention that for the same initial conditions
while the amplitude in its neighbors keeps rising monotoni-in the small-amplitude Kerr regime, numerics revealed that
cally until v~ 1.5, when the first neighbors go in the satura-poth localized and oscillatory solutions are possible. In this
tion too. This cascade saturation mechanism can explain thegion, the slopes of the curves are very small and practically
observed bend of the numerical curve for 4 in Fig. 48).  all corresponding soliton solutions are marginally stable.
Indeed, the amplitude of the central element of the discrete In Fig. 6, a typical example of a discrete photorefractive
soliton grows with the increase of the power until it soliton propagation along an array with=101 is presented.
reaches the saturation level. The further increasP @f an  Our focus is on the central part of the array. Similar patterns
outcome of the growing amplitudes of the first neighbors. Itare achieved in a wide interval of for discrete solitons

is plausible to expect that the amplitudes of the secondjiiven by Eq.(7). Note that a qualitatively similar behavior,
neighbors, etc., behave in a similar manner. Thus increasinghere the input beam evolves into a stable discrete soliton, is
of P does not lead to a continuous energy localization into abtained with initially narrow Gaussian, sech, and nearly
single waveguide and its decoupling from the rest of therectangular pulsegwhich are more natural in the experi-
array as in the case of the discrete media with cubic nonlinmen). We would like to underline that the parameters in Fig.
earity. Instead, it leads to a widening of the localized struc6 (a waveguide distance of 3um andEy;=9 kV/cm) are
ture. Moreover, by replacing=18.2 andh=0.5 in Eq.(8)  very close to the practically achievable values in the crystal
we obtainAy=4.545,A,=0.955 while the corresponding nu- SBN61. For the higher values of the oscillatory solutions
merical values aré,=4.439,A,=0.976. are also observed.
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rate depends on the nonlinear frequency of the solution. Our
results show the existence of two cutoff frequencies and a
wide instability region in between, where the homogeneous
solution is modulationally unstable. In addition, the instabil-
ity thresholds and the growth rate spectra are numerically
calculated for discrete systems with a different number of
elements and compared with the corresponding analytical re-
sults. Here a very good agreement between numerical and
analytical results is found. It is also demonstrated, both ana-
lytically and numerically, that such nonlinear waveguide ar-
rays support stable bright one-dimensional discrete spatial
solitons. The high amplitude region is studied numerically
and a cascade mechanism of saturation in the nonlinear array

FIG. 6. Propagation of a discrete screening soliton along thdS found. Finally, the authors would like to emphasize that
array which consists fronN=101 waveguides3=36.4 andh these explicit analytical and numerical results can be inter-
=0.375. esting not only for a particular application in nonlinear optics
but also for various discrete biophysics and solid-state phys-
ics systems with the same saturable nonlinearity.

V. SUMMARY

In conclusion, the discrete nonlinear evolution equation
which describes pulse propagation in a planar homogeneous
array of waveguides in media with a saturable nonlinearity is This work was funded by the German Federal Ministry of
studied. In the case of periodic boundary conditions, twoEducation and Resear¢BMBF, Grant No. DIP-E6.1 and
exact (homogeneous and oscillatorand one approximate INTAS (Contract No. 01-0481 The work of Lj.H. and A.M.
(solitonlike) stationary solution are found. A linear stability (and partially M.S) was supported by the Ministry of Sci-
analysis of the homogeneous solution is performed and an&nce, Development and Technologies of the Republic Serbia,
lytical expressions for the corresponding instability thresh-Project 1964. We are grateful to Dr. Wesner for a critical
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