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Abstract. Non-di�racting wave packages or solitons have been the subject of in-

tense study over the last three decades. In particular optical spatial solitons, for

which di�raction is exactly balanced by self-focusing in a nonlinear medium, have

strongly stimulated the research in the �eld of solitons in the 90's, especially in

photorefractive crystals. Such optical spatial solitons exhibit particle-like behavior

in their interactions and stability properties, conserving energy and momentum,

and the fascinating results obtained in this �eld have major consequences in many

non-optical systems that can support solitons. This article explains the basic mech-

anisms that lead to soliton formation, in particular in photorefractive crystals, and

gives a short overview of new directions like composite solitons, incoherent solitons

formed with spatially incoherent light, and incoherent modulation instability.

1 Introduction

When the scottish scientist John S. Russel reported about what he called a

`rounded smooth and well de�ned heap of water' or `the great primary wave

of translation' in 1834, wave propagation was believed to be a solely linear

phenomenon showing broadening or dispersion during propagation. There-

fore, it may be understandable that at that time the scienti�c community

had serious problems in believing in what Russel noted eleven years later to

be a solitary elevation [1], and it took more than �fty years until the two the-

oreticians Korteweg and de Vries explained this observation in 1895 [2]. The

two dutchmen found out that such a solitary wave must have an unusually

large amplitude when compared to the depth of the water, and that in this

case the water waves behave and propagate in a completely unusual manner,

i.e., they behave as nonlinear waves, or more exact, as waves that propagate

in a nonlinear medium. For more then half a century these results gained only

little attention, although nonlinear waves where observed in many di�erent

wave supporting systems like electron gas in plasmas or phonons in solids.

However, it was in 1965 when Zabusky and Kruskal realized that if two of

such solitary waves intersect or collide with each other, they may completely

maintain their amplitude and shape [3]. Because this behavior is closely re-

lated to the collision of particles, they named these nonlinear waves `solitons'.

Following this discovery, a large amount of theoretical and experimental work

was done in this new �eld of nonlinear wave propagation or soliton physics

[4{6].
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A large amount of todays knowledge on solitons and their behavior upon

collision has been obtained by using optical systems, either optical beams (in

the spatial domain) [7{10] or optical pulses (in the temporal domain) [11{

14] that propagate in a nonlinear optical medium. Such materials possess

signi�cant optical nonlinearities, which means that the materials' properties

are modi�ed by the light itself. The formation of spatial solitons can be un-

derstood as a result of an exact balance between the tendency to broaden

because of di�raction and the nonlinear self-focusing. Similarly, temporal

solitons form when the natural chromatic dispersion is exactly compensated

by the nonlinear self-phase modulation. An intuitive picture for understand-

ing soliton formation is a focused optical beam that gets self-trapped in its

own written waveguide. When a narrow light beam travels through a lin-

ear medium without a�ecting the materials' properties, it undergoes natural

di�raction and broadens during propagation. The narrower the beam is at the

beginning, the larger is its spatial divergence. One of the simplest realization

of a nonlinear optical medium is a Kerr-type material where the refractive

depends on the light intensity. If the light-induced refractive index change is

positive, i.e., the refractive index is increased in the region of higher inten-

sity, a narrow beam is self-focused by the induced nonlinear lens. It is obvious

that there must exist a certain strength of the lens where the spatial di�rac-

tion of a narrow optical beam is exactly balanced by the self-lensing e�ect: a

bright optical soliton has formed that propagates without di�raction. Dark

solitons, by the same de�nition, are dark stripes or notches on an otherwise

homogeneous intensity background, which do not change their pro�le during

propagation, too [10]. In this case, a self-defocusing nonlinearity acting upon

the illuminated parts balances the di�raction of the dark notch. A schematic

view of this picture of di�raction of bright and dark beams that is balanced

by nonlinear focusing and defocusing, respectively, is given in Fig. 1.

Fig. 1. Amplitude (solid

lines) and phase fronts

(dashed lines) for a bright

(left hand side) and dark

(right hand side) beam:

Natural di�racting beam

(upper row), nonlinearly

focused beam (middle row)

and balance of di�raction

and focusing (lower row),

leading to soliton propaga-

tion

This article is devoted to optical spatial solitons in photorefractive cys-

tals [15,16]. In this class of materials large nonlinear index changes can be

obtained at a very small light power level that is in or even below the mi-
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crowatt regime. Depending on the experimentally controllable parameters,

both nearly Kerr-type and saturable nonlinearities can be obtained. In the

next section, some basic properties of these two types of nonlinearities will be

discussed as well as some fundamentals of photorefractive materials. Section

three is devoted to the interaction of solitons, where two possible scenar-

ios, namely coherent and incoherent interactions, are discussed separately.

The last section deals with soliton formation and its precursor, modulation

instability, using partially spatially incoherent light.

2 Spatial Solitons

In a nonlinear optical medium, narrow light beams can propagate without

any spatial di�raction, thus forming spatial optical solitons. This happens

when an optical beam changes the materials refractive index in such a way

that it generates a focusing positive lens. Obviously, this results in an optical

waveguide, as now the refractive index in the center of the beam is higher

than that at the beam's margins. If the optical beam is also a guided mode

of this graded-index waveguide, the reciprocity criterium for spatial soliton

formation is ful�lled: a soliton forms when the localized wave-packet induces

a potential and gets trapped in it, thus becoming a bound state in its own

induced potential.

2.1 Kerr-Type Nonlinearity

Kerr nonlinearities are characterized by an instantaneous refractive-index

change�n that is proportional to the light intensity I , �n = n2 �I , with n2 as

the nonlinear coeÆcient. This nonlinearity is the result of a weak anharmonic-

ity of the elongated electrons of the medium and therefore, at suÆciently high

intensities, nearly all media show a noticeable Kerr e�ect, including crystals,

liquids or even gases like air [17]. The governing equation for soliton propa-

gation in Kerr media is the nonlinear Schr�odinger equation with a cubic po-

tential [18]. It has been theoretically shown that only one-dimensional (1D)

bright solitons, i.e., solitons that are trapped in only one transverse dimen-

sion, can propagate stable in a 1D planar medium [5]. Bright 1D Kerr solitons

in a two-dimensional (2D) bulk medium su�er from transverse instabilities

[6], and 2D Kerr solitons undergo catastrophic collapse [4]. As a consequence,

stable 1D Kerr solitons can only be observed in slab waveguides but not in

volume samples. In an earlier experiment in 1985, Barthelemy et al. were

able to form stable Kerr solitons in liquid CS2 by arresting the transverse

instability with an additional interference grating [7]. However, the �rst true

Kerr soliton was observed in a single-mode glass waveguide by Aitchison et

al. in 1990 [8].
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2.2 Saturable Nonlinearity

As early as in 1974 Bjorkholm and Askin were the �rst to demonstrate spatial

soliton formation in a cell �lled with sodium vapor [19], and it was about

twenty years later in 1993 when Duree et al. [20] demonstrated a stable 2D

spatial soliton in another bulk medium, speci�cally a photorefractive crystal.

Both groups used a nonlinearity which has a saturable nature of the form

�n = �nsat � I=(I + Isat). Here �nsat is the saturated nonlinear refactive

index change, I is the intensity of the bright beam, and Isat is the saturation
intensity. In the early 1990's it has been theoretically shown that for such a

type of a saturable nonlinearity, the catastrophic collapse of 2D solitons in

bulk media can be arrested [21]. This is due to the fact that for this type of

the nonlinearity the nonlinear index change �n cannot exceed a certain value

�nsat, and therefore a higher intensity as a result of stronger self-focusing

leads to a broader waveguide pro�le. Because the fundamental mode of such

a broader waveguide has also a larger diameter, this can compensate for the

stronger self-focusing and leads to a stable 2D soliton in a 2D or bulk medium.

Photorefractive materials are noninstantaneous nonlinear media, where

charge carriers are optically excited from impurities and redistributed by

di�erent charge transport mechanisms [15,16]. After numerous cycles of ex-

citation and re-trapping which de�nes the response time of the material,

these charges are �nally trapped in nonilluminated regions of the sample by

deep centers within the bandgap of the material, leading to a space charge

�eld Esc that modulates the refractive index �n via the electrooptic e�ect,

�n = �0:5n3rEsc, where r is an electrooptic tensor element. Corresponding

to the di�erent mechanisms of charge transport in photorefractive crystals,

di�erent types of solitons have been identi�ed in these materials, namely the

screening spatial soliton [21,20] that relies on drift of charges in an external

�eld, and the photovoltaic soliton [22,23] that is driven by the bulk photo-

voltaic e�ect.

A schematic picture of photorefractive soliton formation is shown in Fig. 2.

Let us consider a narrow beam with intensity I that propagates in a photore-

fractive crystal across which an external electric �eld E0 has been applied.

The direction of this �eld is in such a way that the refractive index �n is

decreased via the electrooptic e�ect. Due to the photoexcited charge carriers

the photoconductivity is increased in the illuminated region of the crystal,

and consequently the external �eld is at least partially screened in the illu-

minated part of the sample [20]. This leads to a negative dip of the overall

electric �eld E, whereas this �eld is almost not changed in the unilluminated

part of the crystal. As can be seen from the minus sign in the de�nition of

the electrooptic e�ect (provided that r is positive) this results in a positive

refractive-index change and �nally leads to self-focusing of the beam.

From the experimental point of view, photorefractive crystals enable a

relatively simple realization of spatial optical solitons. All parameters inu-

encing the soliton formation and their properties can be easily controlled. For
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Fig. 2. Formation of a

bright photorefractive soli-

ton. In the region illumi-

nated by a narrow beam

the external electric �eld

is screened, leading to a

local positive refractive-

index change via the elec-

trooptic e�ect

example, the maximum size �nsat of the nonlinearity may be adjusted by ap-

plying an appropriate external electric �eld E0 to the sample, and the degree

of saturation (that depends on the conductivity ratio inside and out o� the

region illuminated by the beam) can be adjusted by illuminating the sample

homogeneously with an additional background beam, which provides a homo-

geneous background conductivity. For most experiments with photorefractice

solitons, strontium-barium niobate (SBN) crystals have been used [21,20,24{

26]. This material has a large electrooptic tensor element r33 � 280 pm/V,

which enables soliton formation at rather small values of the externally ap-

plied electric �eld. An example of soliton formation in a planar SBN waveg-

uide is given in the following �gure [25].

In Fig. 3(A) the soliton formation starting from the initially divergent

HeNe laser beam (632.8nm) as a function of the externally applied electric

�eld is illustrated. Here the initial beam diameter at the input plane is din =

Fig. 3. Spatial soliton formation in a planar SBN waveguide. (A) Beam diameter

d (FWHM) at the output face of the waveguide as a function of the electric �eld

E and for two di�erent input powers Pin of the HeNe laser. (B) Intensity pro�les

I(z) on the output face measured for di�erent external electric �elds E and for an

input power of Pin=4.3�W. The solid line shows the input beam pro�le (shifted

for better viewing)
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10�m, and without electric �eld it increases because of di�raction to d =

125�m at the output face. For electric �elds larger 5 kV/cm the dependence

d(E) shows a threshold-like behavior corresponding to the formation of a

light-induced waveguide channel that traps the initial light beam. Above this

threshold, the beam diameter changes only slightly with electric �eld. The

corresponding intensity pro�les I(z) at the exit face of the waveguide are

given in Fig. 3(B) for di�erent electric �elds E.
Up to now only the self-trapping of single or scalar optical beams has

been considered, where beam propagation is governed by a single equation.

However, there exist also the possibility to trap beams that consist of two or

more di�erent components. As now the corresponding equations consist of a

whole set with one coupled equation for each component, these creatures are

called vector solitons. A prerequisite for vector solitons to exist is that any

interference between the di�erent components or modes is absent and does

not contribute to the nonlinear refractive-index change. The simplest case

has been suggested by Manakov already in 1974 [27] and realized recently

by Kang et al. in 1996 [28]. He has shown that temporal vector solitons that

consist of two ortogonally polarized modes can exist in optical �bers that

exhibit a nonlinear Kerr e�ect. Other techniques used to form vector solitons

in photorefractive crystal is to use mutually incoherent soliton components

[29] or beams with slightly di�erent optical frequencies [30].

3 Soliton Interactions

Among the most interesting properties of optical solitons is the nonlinear

interaction that takes place when two solitons intersect or propagate close

enough within the medium so that the evanescent �elds of the guided beams

at least slightly overlap. These interactions are commonly referred to as col-

lisions. In purely Kerr-type media, it is well known that solitons, in most

respects, behave as particle-like objects, and the identity of each soliton is

maintained in the interaction [3]. However, solitons in materials with sat-

urable nonlinearity can behave completely di�erent and show a much more

rich spectrum of di�erent collision outputs. Both, repulsive and attractive

forces between the interacting light beams, can lead to fusion, �ssion, spiral-

ing, or energy exchange of the solitons [31{33]. The interaction of coherent

solitons critically depends on the relative phase of the interacting light beams

[31,32]. However, in a soliton-based device it may be diÆcult to keep this

phase relation constant during propagation of the involved beams, and the

output of the interaction will be rather diÆcult to control. To avoid these

potential problems, one may consider also the interaction of mutually inco-

herent solitons, where phase relations do not a�ect the interaction [34].
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3.1 Coherent Interactions

When the nonlinear medium can respond to interference e�ects of the inter-

acting beams, coherent interactions occur. This is the case for instantaneous

nonlinearities like the Kerr e�ect, and for noninstantaneous nonlinearities

(including the photorefractive e�ect) provided that the interference patterns

are temporally stable. The latter situation implies that the phase relation of

the interacting solitons has to be kept stable for a time that is considerably

larger then the mediums response time. Phase-dependent interacting forces

between two coherent photorefractive solitons have been observed in di�er-

ent bulk and waveguide materials including BTO [35] and SBN crystals [36],

leading to attraction or repelling of colliding beams as well as to energy ex-

change between them. Here a proper choice of relative phase and intersecting

angle has resulted in the fusion of two solitons and the generation of a third

beam upon interaction [37]. Very recently, the annihilation of solitons as a

result of the interaction of three spatial solitons in a SBN sample has been

demonstrated [38].

An example of a coherent soliton collision is given in Fig. 4, where two

beams intersect under a small angle 2� inside a planar SBN waveguide [33].

Shown is the intensity pro�le on the endface as a function of the relative

phase � of the two solitons. When the two beams are in phase (antiphase),

they interfere constructively (destructively) and therefore increase (reduce)

the refractive index in the intersection region. An increased refractive index

leads to a deection of both beams towards each other, and for a proper

choice of the intersection angle the two beams merge together as can be seen

in Fig. 4(A) (solid line). For the antiphase case (� = 180Æ) their distance

on the endface increases to 50�m (dotted line) when compared to the initial

separation of 35�m of the beams without nonlinearity. The exchange of en-

ergy between two intersecting solitons having a relative phase di�erence of

� = �90Æ is shown in Fig. 4(B). In both cases, a large part of the intensity

initially guided in one beam is coupled into the other one. The direction of

energy transfer solely depends on the sign of the relative phase di�erence of

the two beams.

3.2 Incoherent Interactions

When the relative phase between interacting light beams changes much faster

then the response time of the medium only incoherent interactions can occur

[34]. The colliding solitons do not interfere with each other, and the light

intensity always increases in the overlap region. When two of these solitons

propagate parallel but close to each other (at a distance comparable to the

soliton width), or intersect under a small angle that is smaller than the criti-

cal angle for guiding in the induced waveguide, their beam trajectories move

closer to each other due to the interaction, or eventually fuse together, indi-

cating an attractive force between the beams [34,39,40]. However, for some

certain interaction schemes also repulsive forces have been observed [41].
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Fig. 4. Intensity distribution I(x) on the endface of a planar SBN waveguide for

di�erent relative phases � of the two solitons. The two solitons intersect at an angle

2� � 0:7Æ and their separation on the endface without interaction is 35�m. (A)

�=0Æ (solid line) and �=180Æ (dotted line). (B) �=+90Æ (solid line) and �={90Æ

(dotted line), both cases show energy exchange

4 Incoherent Solitons

Until recently, solitons were considered to be solely coherent entities. How-

ever, incoherent solitons that are formed by partially incoherent light were

recently demonstrated experimentally [42,43] and investigated theoretically

[44,45]. Incoherent solitons are multimode or speckled beams for which the

instantaneous intensity distribution is varying randomly with time. They can

exist only in noninstantaneous media, i.e., a nonlinear self-focusing material

with a response time that greatly exceeds the characteristic phase uctuation

time of the beam. Such a medium, therefore, responds only to the average

intensity of the beam and cannot react to the instantaneous intensity uctu-

ations. An incoherent soliton forms when the time-averaged intensity induces

a multimode waveguide and traps itself in it by populating the guided modes

in a self-consistent fashion. Experimentally, the existence of self-trapped spa-

tially incoherent beams was �rst proved using a rotating di�user that gener-

ated a speckled beam with a correlation distance of only a few micrometers

[42]. Later on, also both, spatially and temporally incoherent solitons were

formed using white light from a simple incandescent light bulb [43].

4.1 Modulation Instability and Pattern Formation

Modulation instability (MI) is a universal process that is inherent to most

nonlinear wave systems in nature [46{51]. Because of MI, small amplitude

perturbations that originate from noise on top of a homogenous wave front

grow rapidly under the combined e�ects of nonlinearity and di�raction. As a

result, a plane wave or broad beam starts to disintegrate during propagation

[46{49], which results in spatial �lamentation of the wave. Analogous, in the

temporal domain a quasi-cw pulse will break into a train of short pulses be-

cause of the combined action of self-phase modulation and dispersion [50,51].
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It is important to note that MI typically occurs in the same parameter region

where spatial or temporal solitons are observed. The relation between MI and

solitons is best manifested in the fact that the �laments that emerge from

the MI process are actually trains of almost ideal solitons [52,53]. Therefore,

MI can be considered to be a precursor to soliton formation.

So far it was always believed that MI is inherently a coherent process and

thus it can only appear in nonlinear systems with a perfect degree of spatial

and/or temporal coherence. However, recently it has been shown theoretically

that MI can also exist in relation with partially-incoherent wave-packets or

beams [54]. This in turn leads to several important new features: for example,

incoherent MI appears only if the strength of the nonlinearity exceeds a well-

de�ned threshold that depends on the degree of spatial correlation.

Experimentally, incoherent MI has been observed very recently in a bi-

ased photorefractive SBN sample illuminated with spatially incoherent light

[55]. It has been shown that even in such a nonlinear partially coherent sys-

tem of weakly-correlated particles patterns can form spontaneously. For the

instability to occur, the value of the nonlinearity has to exceed a speci�c

threshold that depends on the coherence properties of the light. Above the

threshold, periodic trains of 1D �laments are observed. At higher values of

the nonlinearity, these �laments break up into self-ordered arrays or patterns

of light spots. Examples of incoherent MI leading to 1D �lamentation and

2D pattern formation are given in Fig. 5. Shown is the intensity of the signal

beam on the output face of the nonlinear crystal. Fig. 5(A) corresponds to a

value of the nonlinearity signi�cantly above the threshold where the �laments

have been formed everywhere. When the nonlinearity is further increased, a

second threshold is reached: the 1D �laments become unstable and start to

break into an ordered array of 2D spots (Fig. 5(B)). It has to be mentioned

that in both pictures displayed in this �gure, the correlation distance is much

shorter than the distance between two adjacent stripes or spots.

Fig. 5. Intensity at the output plane of the crystal. The correlation distance is

lc=13 �m and the displayed area is 0.5�0.5mm2. Plot (A) shows the case above

threshold where 1D �laments occur. For much higher nonlinearity the �laments

become unstable and form a 2D pattern (B)
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The existence of incoherent MI actually reects on many other nonlinear

systems beyond optics: it implies that patterns can form spontaneously from

noise in nonlinear many-body systems involving weakly-correlated particles,

such as, for example, electrons in semiconductors at the vicinity of the quan-

tum Hall regime, high-Tc superconductors, and atomic gases at temperatures

slightly higher than Bose-Einstein-Condensation (BEC) temperatures.
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