phys. stat. sol. (a) **154**, K5 (1996) Subject classification: 78.20; S11.1

Fachbereich Physik, Universität Osnabrück¹)

Refractive Indices of Sr_{0.61}Ba_{0.39}Nb₂O₆ Single Crystals

By

D. KIP²), S. AULKEMEYER, K. BUSE, F. MERSCH, R. PANKRATH, and E. KRÄTZIG

(Received January 2, 1996)

Photorefractive $Sr_x Ba_{1-x} Nb_2 O_6$ crystals are promising for many applications [1], e.g. for volume holographic storage [1] and self-pumped phase conjugation [3]. The transition temperature from the ferro- into the paraelectric phase depends on the mole fraction x[4], which enables tailoring of the photorefractive properties. However, crystals grown from the congruently melting composition with x = 0.61 show the best quality and visible striations can be completely avoided. Investigation of $Sr_{0.61}Ba_{0.39}Nb_2O_6$ crystals and development of devices made from $Sr_{0.61}Ba_{0.39}Nb_2O_6$ often require precise knowledge of the refractive indices [5, 6]. In 1968 Venturini et al. [7] measured the refractive indices of $Sr_xBa_{1-x}Nb_2O_6$ crystals with the compositions x = 0.25, 0.50, and 0.75. Values for crystals of the congruently melting composition $Sr_{0.61}Ba_{0.39}Nb_2O_6$ can only be obtained by interpolation of these data. – In this contribution measurements of the refractive indices of single domain $Sr_{0.61}Ba_{0.39}Nb_2O_6$ crystals are presented.

 $Sr_{0.61}Ba_{0.39}Nb_2O_6$ has a tungsten-bronze structure and is ferroelectric (point group 4mm) at room temperature. A nominally pure crystal is grown in the crystal-growth laboratory of the Physics Department of the University of Osnabrück using the Czochralski technique. Growth temperature and pulling rate are 1480 °C and 0.7 mm/h. A triangular prism is cut from the crystal. The c-axis is oriented perpendicular to the two parallel surfaces using a {100} growth face as a reference. All sides were polished to optical quality. Heating the crystal to 110 °C and cooling down to room temperature with an applied electric field of 600 kV m⁻¹ yields a single domain sample. By the minimum deviation method the refractive indices are determined with an absolute accuracy better than ±0.002. We chose different lines of an Ar⁺ laser and a HeNe laser for illumination of the prism. All measurements are carried out at room temperature (T = 22 °C) and the light intensity is kept low (of the order of Wm⁻²) to avoid heating of the sample.

Fig. 1 shows the dispersion of extraordinary $n_{\rm e}$ and ordinary $n_{\rm o}$ refractive indices. The curves are fits of the Sellmeier equation [8]

$$n^{2}(\lambda) - 1 = A + \frac{B\lambda^{2}}{\lambda^{2} - C}$$

$$\tag{1}$$

¹) D-49069 Osnabrück, Germany.

²) e-mail: dkip@physik.uni-osnabrueck.de.

Fig. 1. Refractive indices n_e and n_o of $\mathrm{Sr}_{0.61}\mathrm{Ba}_{0.39}\mathrm{Nb}_2\mathrm{O}_6$ crystals for extraordinarily and ordinarily polarized light vs. light wavelength λ at room temperature $(T = 22 \,^{\circ}\mathrm{C})$. The symbols are measured values and the solid lines fits to the Sellmeier equation (1) with the parameters of Table 1

Table 1

Fits of the Sellmeier equation (1) to the measured extraordinary (n_e) and ordinary (n_o) refractive indices yield the listed parameters A, B, and C

	A	В	$C(10^{-14}~{ m m^2})$
$n_{ m e}$	1.667	2.188	5.690
$n_{ m o}$	1.711	2.248	5.982

Table 2

Extraordinary $(n_{\rm e})$ and ordinary $(n_{\rm o})$ refractive indices and birefringence $(n_{\rm e} - n_{\rm o})$ for some frequently used laser wavelengths λ at room temperature $(T = 22 \,^{\circ}{\rm C})$

λ (nm)	$n_{ m e}$	$n_{ m o}$	$n_{ m e}-n_{ m o}$	
488.0	2.354	2.390	-0.036	
514.5	2.335	2.370	-0.035	
532.0	2.325	2.358	-0.033	
632.8	2.284	2.314	-0.030	

Fig. 2. Birefringence $(n_e - n_o)$ vs. light wavelength λ at room temperature (T = 22 °C). The symbols are measured values and the solid line is calculated from the Sellmeier equation (1) with the parameters of Table 1

to the experimental values with the parameters A, B, and C given in Table 1. Table 2 summarizes the refractive indices for some frequently used laser wavelengths. The birefringence values are also presented in Table 2, and Fig. 2 shows the spectral dependence of the birefringence. The Sellmeier equation (1) describes the experimental values very well and for this reason intermediate values may be interpolated with high reliability.

Acknowledgement We thank the Deutsche Forschungsgemeinschaft (SFB 225 and scholarship Ki482/2-1) for financial support.

References

- R. R. NEURGAONKAR, W. K. CORY, J. R. OLIVER, and M. KHOSHNEVISAN, Ferroelectrics 102, 3 (1990).
- [2] T. PARISH, BYTE, 283 (November 1990).
- [3] Y. H. SHIH, H. Y. ZHANG, X. H. HE, and L. YAN, J. mod. Optics 40, 2321 (1993).
- [4] A. A. BALLMAN and H. BROWN, J. Crystal Growth 1, 311 (1967).
- [5] K. BUSE, R. PANKRATH, and E. KRÄTZIG, Optics Letters 19, 260 (1994).
- [6] D. KIP, S. AULKEMEYER, and P. MORETTI, Optics Letters 20, 1256 (1995).
- [7] F. L. VENTURINI, E. G. SPENCER, P. V. LENZO, and A. A. BALLMAN, J. appl. Phys. 39, 343 (1968).
- [8] J. M. DIDOMENICO and S. H. WEMPLE, J. appl. Phys. 40, 720 (1969).