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S i l v e r n a n o s t r u c t u r e
formation in cinnamyl alcohol

O 35.3

1. Introduction 2. Experimental
For probing the surface density of states (SDOS) we applied MIES and UPS using a
hemispherical analyzer (Leybold EA 10) combined with a source for metastable helium
atoms (mainly He*23S1) and ultraviolet photons (HeI). Additional information for chemical
analysis was obtained by XPS utilizing a commercial non-monochromatic X-ray source
(Fisons XR3E2-324) using Al Ka at a photon energy of 1486.6 eV. Fit curves were gained
using OriginPro 7G with the Peak Fitting Module. A Veeco Dimension 3100 SPM is
employed for tapping mode AFM with silicon cantilevers (NSC15 with Al backside coating
from Micromasch).
H2O (deionised) was offered via backfilling, controlled by a quadrupole mass spectrometer
(Balzers QMG311 equipped with a Balzers QMA 140). Reaction products were monitored

Metastable Induced Electron Spectroscopy (MIES), Ultraviolet Photoelectron Spectroscopy
(UPS), X-ray Photoelectron Spectroscopy (XPS), and Atomic Force Microscopy (AFM) have
been employed to study the adsorption of silver and cinnamyl alcohol on Au(111) and
Si(100) substrates. Initially, these investigations were carried out preceding the
investigation of the adsorption behavior of silver on wood surfaces, where cinnamyl
alcohol is used as model system for lignin. Even though cinnamyl alcohol has only one
technical application by now, some interesting properties of nanostructure formation and
catalytic decomposition have been found.

The investigations of silver adsorption on cinnamyl alcohol [1] for wood
functionalisation included gas adsorption experiments regarding the technical applications.

using a differentially pumped QMS system (Balzers QMG 422) with a linear motion feed
for positioning before the sample.
Silver (Sigma-Aldrich, 99%) was evaporated with a commercial UHV evaporator (Omicron
EFM3) with an Ag+ ion flux of 1 µA corresponding to a growth rate of 0.23 nm min-1 on
Si(100) at room temperature. Cinnamyl alcohol (Sigma-Aldrich, > 97.0 %) was
evaporated in a preparation chamber (base pressure < 10-9 hPa) using a temperature
controlled evaporator (Kentax TCE-BS) at 40 °C for 5 min, leading to a film with a
thickness of about 1.8 nm [2].
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Thereby, a decomposition of the Ag loaded cinnamyl alcohol during exposure to water has
been found. Thus, silver functionalised wood surfaces seem disadvantageous, while the
decomposition process may be utilized for different purposes. Especially after evidences to
be occuring on lignin, too, this decomposition process may be applicable e.g. for biomass
valorization.

3. Chemical inertness of the uncovered cinnamyl alcohol
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+ 2⋅10 L water Ag / Cinnamyl alcohol / Au(111)
Cinnamyl alcohol / Ag / Si(100)Gold single crystals are known to be not

affecting cinnamyl alcohol. [2]

Even though cinnamyl alcohol is known to
be susceptible to humid or oxidizing
environments:

No changes during water adsorption
at all neither in XPS nor in MIES or
UPS.

The known susceptibilities to different
atmospheres must be happening on

Cinnamyl alcohol on Au(111) is used as reference system, since
it is proven to be inert against 1010 L H2O.

Ag adsorption just slightly influences the cinnamyl alcohol
structures in XPS, while MIES and UPS get dominated by the
adsorbed silver.

Cinnamyl alcohol adsorbed on closed silver PVD films yields:
Peaks at same binding energies as for adsorption on Au(111)      
in MIES and UPS
Some additional O1s species, most probably at Ag defects 
Th C1 k di ib i A (111)

4. Catalytic decomposition of the cinnamyl alcohol and nano particle formation
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much larger timescales or dosages.

The decomposition of silver loaded
cinnamyl alcohol films must occur via
another process including some kind of
interaction with the adsorbed silver.

The same C1s peak distribution as on Au(111)
A changed C/O ratio, maybe due  to adsorption geometries
Similar film thicknesses on Au(111) and defective Ag.
No cinnamyl alcohol decomposition on closed Ag films,

regarding the huge amounts of water vapor during the thermal 
evaporation of cinnamyl alcohol.

(C) Cinnamyl alcohol
+ Silver

 1040 L t

XPS Au4f:
- Decreasing film thicknesses, slightly on silver 

adsorption and significant on exposure to water
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+ 1040 L water XPS C1s and O1s:
- Slightly increasing intensities on Ag adsorption 
- Significantly decreased intensities after H2O

Film degradation

XPS Ag3d: 
- Significant increased intensity after H2O

Ag atoms initially insulated by cinnamyl alcohol
- Surplus species vanishing on further H2O

Chemical interaction with other adsorbates

5. Summary
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AFM image of a 1µm x 1µm region of a silver
loaded film of cinnamyl alcohol after water
dosage [1]

- MIES/UPS structures of cinnamyl alcohol mostly dominated by Ag(AN) and Ag4d after Ag adsorption
Ag adsorbed on top of the cinnamyl alcohol

- Ag4d(I) arising in MIES after subsequent exposure to H2O
AD peak in MIES only on inhibition of resonant transfer necessary for Ag(AN)
Initial formation of immersed Ag clusters (see AFM after higher dosages)

- Increased Ag4d(II) in UPS
Initially insulated Ag atoms gain contact to substrate

Neither cinnamyl alcohol films on Au(111) (A), nor cinnamyl alcohol on closed silver PVD
films (B) showed any degradation up to 1010 L of water.

Silver loaded cinnamyl alcohol films (C) were mainly decomposed within 1040 L water
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Silver loaded cinnamyl alcohol films (C) were mainly decomposed within 1040 L water
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Silver atoms were found to start clustering on exposure to water, while finally forming
nano-sized particles (see AFM, diameter ~ 9 nm).

Mass spectra during water offer (not shown) yield the production of short-chained
alkanes, alcohols and aldehydes.
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