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1. Introduction

Titanium dioxide nano particles are used commonly in various applications due to their
high catalytic activity. Many of these applications require subsequent treatments after the
deposition of the TiO, particles. Some of these include thermal processing at high
temperatures, e.g. roof tiles. During such procedures the nano particles transform from
the catalytical highly active anatas structure to the substantially less active rutil structure.
This structural change has been found to be significantly retarded when coating the TiO,
nano particles with a closed film of SiO,. During the thermal treatment, these films break
open, revealing the underlying TiO,. Thus, the film thickness has to be appropriate for the
designated treatment subsequent to the nano particle deposition.

In this study, we present an approach of SiO, film deposition out of silan gas. For
technical implementations, test gas containing about 1.5% silan in 98.5% nitrogen is
preferred over pure silan, since much less precautions are needed. Closed films produced
by dielectric barrier discharges in such mixtures of gases consist of mainly non-
stoichiometric silicon nitride. The conversion of this silicon nitride layer to silicon dioxide is
shown to be largely possible by subsequent plasma treatment in different atmospheres
such as pure O,, as well as in environmental air.

All studies have been carried out in an ultra high vacuum apparatus, while the plasma
treatments have been carried out at atmospheric pressure. During the investigations we
employed metastable induced electron spectroscopy, ultraviolet photoelectron
spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy.
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2. Experimental

For probing the surface density of states (SDOS) we applied MIES and UPS using a
hemispherical analyzer (VSW HA100) combined with a source for metastable helium
atoms (mainly He*23S,) and ultraviolet photons (Hel). Additional information for chemical
analysis was obtained by XPS utilizing a commercial non-monochromatic X-ray source
(Specs RQ20/38C) using Al Ka at a photon energy of 1486.6 eV. Fit curves were gained
using OriginPro 7G with the Peak Fitting Module. A Veeco Dimension 3100 SPM is
employed for tapping mode AFM with silicon cantilevers (NSC15 with Al backside coating
from Micromasch).

Plasma treatments have been carried out employing alternating high voltage pulses with a
peak voltage of 11 kV, a pulse duration of 0.6 ys and a pulse repetition rate of 10 kHz.
The used process gases were O, (Linde Gas, 99.995%), N, (Linde Gas, >99.8%),
atmospheric air and a silane gas mixture (Linde Gas) consisting of 1.5% SiH, (99.999%)
and 98.5% N, (99.9996%).
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5. Discussion
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See also: S. Dahle, L. Wegewitz, A. Weber, W. Maus-Friedrichs,
International Conference on Plasma Surface Engineering (2012)
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Dividing the plasma-based deposition of SiO, into the two steps of silicon deposition and
transformation towards silicon oxide led to...

. The deposition of non-stoichiometric Si;N during the first step and

. The transformation into a nearly stoichiometric SiO, film during the second step,

. Which fully encloses the initial clusters of TiO, particles.

. Thus, the deposition process employing SiH, as precursor gets simplified very much.

. Additionally, an implicit cleaning and passivation of the nanoparticles’ surfaces from all
adsorbats took place.
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Outlook: The dependence of the deposition and the transformation steps is currently
being investigated in more detail.
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