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We report on the synthesis of copper nanoparticles in two different water- and air-stable ionic

liquids using plasma electrochemical deposition. The copper nanoparticles were deposited in

1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py1,4]Tf2N) and 1-ethyl-

3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMIm]Tf2N). To get information on the

dimensions of the particles made, we have applied in situ transmission electron microscopy (TEM)

(particles in ionic liquid). The chemical composition was investigated by ex situ X-ray

photoelectron spectroscopy (XPS). We found that the copper particles produced in [Py1,4]Tf2N

were larger in size compared to the particles obtained in [EMIm] Tf2N (roughly 20 vs. 10 nm).

The chemical composition of the particle surface differs too. In both cases the particles are partly

oxidised leading to a CuO shell, but the particles obtained in [Py1,4]Tf2N carry a lot of residues

from the ionic liquid.

1. Introduction

Metal nanoparticles have found extensive attention due to their

unique electronic properties, chemical reactivity and potential

applications in optical, magnetic or electronic devices and in

catalysis. As the particle size approaches the nanometre scale,

the number of atoms in the grain boundaries at the particle

surface increases. This leads to dramatic effects on the physical

properties as well as on the catalytic activity of the bulk material.

A number of different methods have been developed to prepare

metal nanoparticles, such as chemical,1 photochemical,2 and

electrochemical ones.3

Since metal nanoparticles are often quite reactive, inert gas

environments and addition of stabilising agents, such as poly-

mers and surfactants, are usually employed in preparation.4,5

However, for the optimal application, a pure metal colloid

solution is preferred because the additives can interfere with the

particle surface, inducing a negative effect on the properties.

Ionic liquids have successfully been employed for the synthesis

and stabilisation of metal nanoparticles without the addition

of stabilising agents.6–9 It was reported6 that very fine and

stable nanoparticles of Ir(0) and Rh(0) with 2.0 nm–2.5 nm

diameter can be synthesised in the dry ionic liquid 1-butyl-

3-methylimidazolium hexafluorophosphate from [Ir(cod)Cl]2
(cod = 1,5-cyclooctadiene) and RhCl3�3H2O, respectively,

by chemical reduction. The isolated nanoparticles can be

re-dispersed in the ionic liquid, in acetone, or used in solvent-

less conditions for the liquid–liquid biphasic, homogeneous or

heterogeneous hydrogenation of arenes under mild reaction

conditions (75 1C and 4 atm).6 Stable Pt(0) nanoparticles of

2–3 nm diameter and with a narrow size distribution can be

easily obtained via decomposition of Pt-organometallic

precursors, e.g., Pt2(dba)3 (dba = bis-dibenzylidene acetone),

in 1-butyl-3-methylimidazolium hexafluorophosphate.7 These

nanoparticles are recyclable catalytic systems for the solvent-

less or biphasic hydrogenation of alkenes and arenes under

mild reaction conditions. Itoh et al.8 reported the synthesis

and functionalisation of gold nanoparticles modified with

ionic liquids based on the imidazolium cation. Gold and

platinum nanoparticles with diameters of 2–3.5 and 2–3.2 nm,

respectively, can also be synthesised using novel thiol-

functionalised ionic liquids (TFILs).9

As ionic liquids have very low vapour pressures (at or near

room temperature typically between 10�9 and 10�8 Pa and at

100 1C in the region of 10�4–10�2 Pa depending on the

particular liquid), they can be employed in vacuum experiments

as fluid substrates or solvents. Torimoto et al. reported e.g.

that very fine gold nanoparticles can be obtained by sputter

deposition of gold onto ionic liquids.10

Quite recently we have reported that free, isolated silver

nanoparticles can be obtained in the ionic liquid 1-ethyl-

3-methylimidazolium trifluoromethylsulfonate [EMIm]TfO by

applying plasma as a mechanically contact-free electrode.11,12a,12b

We could show that ionic liquids are well suitable as electro-

lytes for plasma electrochemical processes, as their vapour

pressure is extremely low, thus facilitating stable and homo-

geneous plasmas.11 The plasma electrochemical approach is

hitherto the only electrochemical route to the synthesis of free

nanoparticles. A glow discharge plasma was employed as a
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gaseous electrode and the other (solid) electrode was immersed

in the ionic liquid containing the desired metal salt. This

method was also successfully applied for the reduction of

HAuCl4 and PdCl2 in 1-butyl-3-methylimidazolium tetrafluoro-

borate [BMIm]BF4 by Xie and Liu.13

In this paper we report on the synthesis of free, dispersed

copper nanoparticles in the air- and water-stable ionic liquids,

1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide

([EMIm]Tf2N) and 1-butyl-1-methylpyrrolidinium bis(trifluoro-

methylsulfonyl) amide ([Py1,4]Tf2N), by employing plasmas as

mechanically contact-free electrodes. Cu nanoparticles are

interesting due to their catalytic and electrocatalytic properties.

Nanocrystalline compact copper layers with an average

crystallite size of about 50 nm can e.g. be electrodeposited

without additives in the ionic liquids [Py1,4]TfO
12a and

[Py1,4]Tf2N.14 As ionic liquids can—in our experience—

strongly influence the particle size of electrochemically made

materials it raises the question to which extent the ionic liquid

influences the particle size in the plasma electrochemical

experiment.

2. Experimental

2.1 Preparation of the samples

Copper was dissolved electrochemically in [EMIm]Tf2N or in

[Py1,4]Tf2N from a copper wire (Alfa Aesar: 99.999%) by

using salt bridge separating working and counter electrode

compartments. The concentration and the oxidation state of

copper were determined with Faraday’s laws. The benefit of

this preparation method is that the copper is dissolved in the

Cu1+ state in the liquid. Another hint for the oxidation state is

the colourlessness of both prepared solutions, because Katase

et al. show that a Cu+ trimethyl-n-hexylammonium bis-

(trifluoromethylsulfonyl)amide solution is colorless in contrast

to dissolved Cu2+.15 Thus, there is just one reduction step

from Cu1+ to Cu needed and the oxidative attack of Cu2+ on

freshly made Cu nanoparticles leading to Cu+ is avoided. At

room temperature the efficiency of copper oxidation to Cu+ is

100% at low overvoltages, providing that extremely pure ionic

liquids are used. Two copper concentrations were investigated,

62 mmol L�1 in both liquids and 24 mmol L�1 in [Py1,4]Tf2N.

Cyclic voltammetry has shown that it is possible to electro-

deposit copper from both prepared solutions. The results are

in good agreement with our previous results.14 The setup for

the particle production consists of a dc plasma reactor with

controlled argon atmosphere inside an inert gas glove box

(OMNI-LAB from Vacuum Atmospheres). The plasma

reactor consists of a glass cell with usual KF (Klein Flange)

vacuum connectors. The glass cell is made of two parts,

connected with KF vacuum parts, which facilitates filling of

the cell. One of the two platinum electrodes is fused in the cell,

the other one is welded on a feed through flange. The cell is

evacuated with a common rotary pump. The control of the

argon gas flow for the plasma (we use the argon directly from

the glove box, oxygen content o 1 ppm) is done with an easy

to handle dosing valve (Pfeiffer Company). The plasma was

ignited with a common dc power supply. All experiments were

done at room temperature.

2.2 Spectroscopic and microscopic measurements

The particle size of the copper particles was determined by

transmission electron microscopy (TEM). The TEM used is a

JEOL JEM-2100 and the acceleration voltage was 120 kV. For

the TEM measurements a small drop of the ionic liquid with

the produced nanoparticles was placed onto a TEM grid. The

chemical composition of the used ionic liquids, with and

without Cu, as well as that of the particles was analysed

ex situ with X-ray photoelectron spectroscopy (XPS). For

the ex situ measurements the particles were separated by

centrifugation and washed several times with acetone to

remove most of the ionic liquid. After washing, a droplet of

acetone with highly concentrated particles was put onto a

doped oxidised silicon (100) wafer. Desorbing of the acetone

leads to a thin layer of particles on the silicon substrate. XPS

was performed using a commercial X-ray source (Fisons

XR3E2-324). The spectra were recorded under UHV conditions

(B10�8 Pa), using Al-Ka primary radiation (14 kV, 20 mA,

1486.6 eV). After acquisition of the spectra, various data

handling procedures were carried out on the raw data. Survey

(broad energy range, low resolution) spectra were collected to

determine the elemental composition of the sample surfaces.

High resolution spectra (resolution of 1.5 eV) of the Cu 2p

core levels were collected to determine chemical/bonding

states. All given values in eV are referenced to the C 1s peak

(in this case C 1s = 285 eV). XPS is a highly surface sensitive

technique, providing information on the outermost 5–10 nm

of the sample. XPS peaks were fitted mathematically

using overlapping Gauss profiles. The fitting was performed

applying OriginPro7 including the Peak Fitting Module

(OriginLab Corporation).

3. Results and discussion

3.1 Copper in [EMIm]Tf2N

An appropriate amount of the ionic liquid [EMIm]Tf2N

containing 62 mmol L�1 Cu+ (2 ml) was put in the glass cell

and carefully out-gassed at 0.1 Pa. Then the plasma was

ignited at a pressure of 100 Pa at a current of 10 mA. In our

experiments the electrode above the liquid acted as a cathode

and the other one as an anode. After ignition the voltage drops

immediately from 1000 V to 450–500 V. A typical plasma

experiment (30 minutes) is shown in Fig. 1. Shortly after

ignition (Fig. 1b) a dark cloud appears at the plasma–ionic

liquid interface. With ongoing time this cloud grows down-

wards the cell. The rest of the liquid stays clear. At the anode

some small bubbles are formed. This is likely to be due to

decomposition of the liquid at the anode of the cell.

Fig. 2 shows a TEM image of the obtained copper nano-

particles inside the used ionic liquid. Small particles with an

average size of about 11 nm are clearly seen. Unfortunately a

better resolution could not yet be achieved and thus electron

diffraction pattern could not be obtained. This might be due to

the ionic liquid layer adsorbed on the particles. Recent AFM

studies from Atkin et al. show that ionic liquids can be strongly

adsorbed to metallic or non-metallic surfaces delivering several

solvation layers.16 [Py1,4]Tf2N is adsorbed on Au(111) up to

3 times more strongly than [EMIm]Tf2N.17 Thus, in all
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interface reactions in/with ionic liquids solvation layers have

to be expected, which might be quite difficult to remove. On

the other hand these solvation layers might have a varying

stabilising effect on the particles and thus vary the particle size.

An XPS analysis of a thick and closed layer of particles

as deduced from the missing signal of the Si wafer support

(see Fig. 3) reveal that the major spectral contributions consist

of copper, carbon, oxygen and fluorine. Carbon and fluorine

are due to some residues from the ionic liquid. Heating of the

film to 400 1C at a pressure of B10�8 Pa removes the carbon

nearly completely and most of the fluorine. Under these

conditions the bulk phase of the ionic liquid is evaporated.

The oxygen part decreased as well but not as strongly as the

other elements.

The XPS survey spectrum of such a prepared particle film

after heating in vacuum to 400 1C is presented in Fig. 3

together with a spectrum of a copper sheet. Detailed spectra

of the Cu 2p3/2 peak of the heated particles are shown in Fig. 4.

The dotted line represents the original data, peak fits of the

individual components are displayed using coloured solid

lines, while their sum is shown as the black solid line. The

Cu 2p3/2 peak comprises two contributions with binding

energies at 932.3 (blue line) and 933.3 eV (dark blue line).

The additional peak around 943 eV (orange line) in the Cu 2p3/2
peak region is due to a shake up process (the ejected core

electron simultaneously transfers some of its energy to another

electron). This structure is an indication of CuO,18,19 because

this shake up is due to the open 3d9 shell of Cu2+ (see for

comparison the detailed copper 2p spectra in Fig. 6). The

energetic peak position for the Cu 2p3/2 around 933.3 eV is in

very good agreement with the value given in the literature for

CuO.19 The structure at 932.3 eV could be either assigned to

clean copper or to copper in Cu2O. In vacuum CuO can be

easily reduced to Cu2O.19 The change from CuO to Cu2O

could be seen in the strong decrease of the shake up peaks in

the Cu 2p3/2 peak region. Under the assumption that no

contribution of metallic copper or Cu2O is visible in the detail

spectra of the Cu 2p region for the as-deposited (unheated

case) particles, we could calculate a minimum CuO film

thickness of about 3 nm for the particles. This is just a rough

approximation, but it seems possible that the smaller particles

Fig. 1 Plasma experiment (30 min) Cu+–[EMIm]Tf2N.

Fig. 2 TEM image of Cu particles in [EMIm]Tf2N.

Fig. 3 XPS survey spectrum of a Cu nanoparticle film ([EMIm]Tf2N)

after heating to 400 1C compared to clean copper sheet.

Fig. 4 XPS Cu 2p3/2 region of the nanoparticle film ([EMIm]Tf2N)

after heating to 400 1C.
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are completely oxidised and some have an oxide shell.

This oxide layer is most likely due to oxygen attack during

(unavoidable) ex situ handling of the samples under air leading

to CuO. Currently it is an open question whether the particles

are completely oxidised or consist of a metallic core and an

oxide shell. For electrodeposited aluminium and silicon nano-

particle films from ionic liquids it was shown that these

particles have a core shell structure.20 In order to obtain direct

information on the chemical composition of the ionic liquids

and possible changes by the plasma treatment XPS experi-

ments on ionic liquids surfaces containing the particles itself

have been performed (Fig. 5). Briefly, the as-deposited

[EMIm]Tf2N exhibits no unexpected elements and the relative

carbon, nitrogen, sulfur, oxygen and fluorine peak areas reflect

the stoichiometry of the ionic liquid as previously reported.21

The detailed spectrum of the Cu 2p3/2 peak of the particles

in the liquid is shown in Fig. 6. The spectrum for the particles

in the liquid looks like CuO in comparison with clean copper,

oxidised copper and a CuO reference spectrum. As there was a

quite long ex situ transfer time between the production and the

measurements it is an open question whether an in situ or an

ex situ oxygen attack is responsible for the oxidation of the

copper at this point. Detailed XPS studies on the influence of

the dissolved copper and copper ions on the surface properties

of the ionic liquids will be presented elsewhere.22

3.2 Copper in [Py1,4]Tf2N

The Cu–[Py1,4]Tf2N solution was prepared and subjected to

plasma electrochemical reduction as in the case of the

Cu+–[EMIm]Tf2N solution. In contrast to [EMIm]Tf2N an

additional colour change could be observed during the plasma

experiment. This is due to an interaction of the liquid with the

plasma itself. Because of the higher viscosity of [Py1,4]Tf2N

(Z E 80 mPa s at room temperature23) the cloud containing

the particles moves more slowly downwards compared to

[EMIm]Tf2N (Z E 36 mPa s23). The corresponding TEM

image is shown in Fig. 7. Again a high resolution image could

not be acquired as the layer of the ionic liquid was too thick.

The average diameter of the copper particles is 26 nm. Also in

this case we could not get information on the crystallinity of

the particles by electron diffraction. The XPS analysis of the

copper particles exhibited some different features compared to

the particles created in [EMIm]Tf2N. The XPS survey spectrum

of a vacuum heated film still shows (Fig. 8) contributions from

fluorine, carbon, oxygen and sulfur. The particle film was not

as dense as in the [EMIm] case; this explains the silicon 2s and

Fig. 5 XPS survey spectrum of [EMIm]Tf2N containing the copper

particles after the plasma process.

Fig. 6 XPS Cu 2p3/2 region of the nanoparticles in [EMIm]Tf2N,

Moulder et al.25
Fig. 8 XPS survey spectrum of a Cu nanoparticle film ([Py1,4]Tf2N)

after heating to 400 1C.

Fig. 7 TEM image of Cu particles in [Py1,4]Tf2N.
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2p peaks from the substrate in the survey spectrum. These

fractions of residues, especially fluorine and sulfur, on the

particles surfaces are another indication of a different inter-

action of the two liquids with the plasma and the copper. To

some extent the contributions of oxygen and carbon have to be

attributed to the silicon substrate, as heating to 400 1C is not

sufficient to clean the wafer entirely. The detailed spectra of

the Cu 2p peaks before and after heating are shown in Fig. 9.

Again the dotted line represents the original data, peak fits of

the individual components are displayed using coloured solid

lines, while their sum is shown as the black solid line. Before

and after heating the main Cu 2p3/2 (Cu 2p1/2) structures (blue

lines) consist of only one peak at different energetic positions

933.4 eV (953.4 eV) and 932.5 eV (952.4 eV), respectively.

Additionally before heating the typical shake up peaks are

visible at 940.8 eV (orange line) and 960.7 eV (red line). After

heating the shake up peaks have completely vanished. Thus

the oxidation state of the particles has changed. The purified

particles consist of a high amount of CuO and by heating in

vacuum they were, in contrast to the particles, produced in

[EMIm]Tf2N, completely reduced (most likely to Cu2O). Under

the same assumption as before, the as-deposited particles

exhibited a minimum oxide film thickness of about 3 nm.

Thus it seems possible that most of the particles have, due to

their larger size, an oxide shell. The XPS for the surface of the

liquid analysis again provides no evidence for impurities and

the peak areas well reflect the expected stoichiometry of the

ionic liquid within the accuracy of this method. Moreover, no

evidence for a modification of the ionic liquid by the Cu and

the plasma treatment was observed. In contrast, to the

Cu+–[EMIm]Tf2N solution we have not been able to detect

Cu so far.

3.3 Discussion

The interaction between plasma and Cu+ containing two

different ionic liquid solutions delivers a similar but slightly

different result, showing that the ionic liquid clearly influences

the particle growth/size. Obviously the different physico-

chemical properties of both employed liquids play a role in

the interaction process. First, the particles prepared in

[EMIm]Tf2N are slightly smaller compared to [Py1,4]Tf2N

(B11 nm vs. 26 nm). The particles are to a certain amount

oxidised to CuO and Cu2O in both cases, (in our opinion) due

to a surface attack during the intensive ex situ treatment,

although an in situ oxidation inside the reactor cannot be

excluded totally. Earlier results on the electrodeposition

of Cu-, Al- and Si-films from ionic liquids support this

assumption.14,20 The different fractions of residues on the

particles raise more questions, thus an interaction of the liquid

with the plasma seems to play a role. The observed colour

change during plasma treatment of [Py1,4]Tf2N supports the

XPS findings for the deposited particles. At a first glance the

decomposition of the [Py1,4] cation might cause the colour

change. However in ultrapure ionic liquids the [Py1,4] cation is

under typical electrochemical conditions roughly 700 mV

more stable than the [EMIm] cation. It might be possible that

the Cu+ ion has an influence on the IL decomposition. In the

literature, there are two publications dealing with the inter-

action of cold plasmas with ionic liquids.13,24 Xie and Liu did

not report any decomposition of [BMIm]BF4–HAuCl4 and

[BMIm]BF4–PdCl2 solutions during plasma treatment as

analysed with IR spectroscopy and NMR.13 In contrast, Baba

et al. found a colour change of pure [BMIm]BF4 through

irradiation with 220 eV plasma ions.24 The colour did not

change when the liquid was irradiated with 20 eV plasma

ions. The XPS measurements of the plasma treated ionic

liquid vacuum interface of both liquids ([EMim]Tf2N

and [Py1,4]Tf2N) with the dispersed particles have shown no

difference between the untreated IL surface and the plasma

treated one.

From our experience with electrochemical deposition of

copper we would rather expect that the particles made in

[EMIm]Tf2N are wider in diameter than those made in

[Py1,4]Tf2N. Both on mica and on Au(111) the ionic liquid

[Py1,4]Tf2N is more strongly adsorbed than [EMim]Tf2N

leading, in our opinion, to different grain sizes. Furthermore,

from the TEM experiments reported here, there is strong

evidence that [Py1,4]Tf2N is more strongly adsorbed on the

particles than [EMIm]Tf2N. Consequently, the particles made

in [Py1,4]Tf2N should be smaller than those made from

[EMIm]Tf2N. These unexpected results might be due to a

Fig. 9 XPS Cu 2p region of the nanoparticle film ([Py1,4]Tf2N) before

and after heating to 400 1C.
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different behaviour of the Cu+ ions at the plasma–ionic

liquid interface. For example the viscosity of [Py1,4]Tf2N is

2 times higher compared to [EMIm]Tf2N, therefore one

can expect a longer residence time of the copper ions

and the resulting copper particles at the liquid–plasma inter-

face leading to a wider diameter. Our studies show that

ionic liquids clearly influence the plasma electrochemical

deposition of copper nanoparticles. Furthermore, the surface

oxidation of the particles is also influenced by the ionic

liquid.

4. Conclusion

We have reported on the synthesis of free, dispersed copper

nanoparticles in air- and water-stable ionic liquids

[EMIm]Tf2N and [Py1,4]Tf2N by employing plasmas as

mechanically contact-free electrodes. We have shown that

the particles produced in [EMIm]Tf2N are smaller in diameter

(B11 nm) compared to those ones produced in [Py1,4]Tf2N

(B26 nm). This is in contrast to the classical electrochemical

deposition of copper in these liquids and might be due to the

viscosity of the liquids. Moreover from the experiments there

are strong hints that [Py1,4]Tf2N is more strongly adsorbed on

these particles than [EMIm]Tf2N. In both liquids the particles

are to a certain extent oxidised to CuO, most likely due to a

surface attack during ex situ treatment. In contrast to earlier

published results on the plasma electrochemical deposition of

Ag nanoparticles, the production of copper nanoparticles is

surprisingly much more complicated. In order to elucidate the

surface chemistry future studies will involve further ionic

liquids as reaction media as well as higher resolution TEM

measurements.
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